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Riassunto: Questo lavoro descrive i modelli marginali gerarchici per tabelle
di contingenza multidimensionali basati su una parametrizzazione delle probabilità
congiunte proposta da Bartolucci et al. (2007). Questa classe di modelli include come
casi particolari molti modelli per tabelle di contingenza, introdotti come alternative ai
modelli log-lineari per ovviare alle ben note limitazioni di questi ultimi nel parametrizzare
distribuzioni marginali e nel trattare in modo appropriato le variabili ordinali. L’utilità dei
modelli presentati è illustrata nel contesto della parametrizzazione di modelli ricorsivi a
blocchi specificati dalle proprietà markoviane di Andersson, Madigan e Perlman.
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1. Introduction

In the log-linear parametrization all the interactions are contrasts of logarithms of joint
probabilities and this is the main reason why this parametrization is not convenient to
express hypotheses on marginal distributions or to model ordered categorical data. On
the contrary Hierarchical Multinomial Marginal models (HMM) (Bartolucci et al. 2007)
are based on parameters, called generalized marginal interactions, which are contrasts of
logarithms of sums of probabilities. HMM models allow great flexibility in choosing
the marginal distributions, within which the interactions are defined, and they are a
useful tool for modeling marginal distributions and for taking into proper account the
presence of ordinal categorical variables. For example only base-line and local logits
together with local and base-line log-odds ratios, defined on joint probabilities, are log-
linear parameters while all the known logits (base-line, local, global, continuation etc.)
and all types of log-odds ratios (base-line, local, global, continuation, etc.) defined on
joint or marginal probability functions are generalized marginal interactions. The HMM
models are based on an ordered family of marginal probability functions such that every
probability function of the family is not a marginal distribution of any of its predecessors.
The parameters of an HMM model are interactions which are defined within the marginal
distributions of the previous family. Several models proposed in the literature are special
cases of HMM models. Log-linear Models are HMM models where the interactions are
defined within the joint probability function. The Bergsma and Rudas (2002) Marginal
Models are HMM models where the interactions are of log-linear type but are defined in
different marginal distributions. The Glonek and McCullagh (1995) Multivariate Logit
Models are HMM models where the parameters are the highest order interactions that
can be defined within each of the marginal distributions. HMM models are introduced
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in section two and in section three the usefulness of the HMM parameterizations in the
context of block recursive multivariate logit models is examined.

2. Basic concepts on HMM models

In this section we show that generalized marginal interactions are standard log-linear
interactions which are computed in tables obtained by marginalizing with respect to
some variables and by aggregating the categories of some other variables. Secondly we
show that every generalized marginal interaction can be seen as a contrast of well known
types of generalized logits and log-odds ratios. We consider q categorical variables Aj,
j = 1, ..., q, where Aj has categories in the set Aj = {ajij , ij = 1, 2, ..., rj}. For ordinal
variables the numbering of the categories is assumed to be coherent with their order. The
vector of the c =

∏q
1 rj joint probabilities is denoted by π and is assumed to be strictly

positive. The set of variables that defines a given marginal distribution is denoted by the
setM of indices of the corresponding variables. The setM is called marginal set and the
distribution associated with it is calledM-marginal distribution. The setQ = {1, . . . , q}
refers to the joint distribution.

2.1. Generalized marginal interactions

Any generalized marginal interaction is defined by the interaction set I of the variables
interacting with one another, by the M-marginal distribution where it is defined,M⊇ I,
and by the logit type assigned to each variable ofM. At first we examine the problem of
allocating the interaction sets among the marginal sets within which they may be defined.

An ordered family H = {M1, ...,Ms} of distinct marginal sets is called hierarchical
family of marginal sets ifMk is not a subset ofMh for every h < k, k = 2, ..., s. Let
Fk be the family of interaction sets allocated within theMk-marginal distribution and let
Pk = P(Mk) be the family of all non-empty subsets ofMk.

Given a hierarchical family H of marginal sets a family of interaction sets is called
complete hierarchical family of interaction sets if (i) every interaction set I, I ∈ P(Q),
is assigned to oneMk-marginal distribution inH, (ii) F1 = P1 and Fk = Pk\

⋃
h<k Fh.

We now introduce Bartolucci, Colombi and Forcina (Bartolucci et al. 2007)
generalized marginal interactions that include the well known types of logits: local,
baseline, global, continuation and reverse-continuation, the types of generalized log-odds
ratios discussed by Douglas et al. (1990) and the recursive or nested logits and log-
odds ratios introduced by Cazzaro and Colombi (2006b). We start from logits defined on
marginal distributions and log-odds ratios defined on bivariate distributions which are the
simplest type of generalized marginal interactions.

Given rj − 1 pairs Bj(mj, 0), Bj(mj, 1), mj = 1, 2, ..., rj − 1, of disjoint subsets
of Aj , the logits, defined on a marginal distribution, are the log-probability odds:
log

P (Aj∈Bj(mj ,1))

P (Aj∈Bj(mj ,0))
.

The sets Bj(mj, 0) are equal to {ajmj
} for local and continuation logits, to {ajij :

ij = 1, . . . ,mj} for global and reverse continuation logits, mj = 1, 2, ..., rj − 1.
The sets Bj(mj, 1) are equal to {aj(mj+1)} for local and reverse continuation logits, to
{ajij : ij = mj + 1, . . . , rj} for global and continuation logits, mj = 1, 2, ..., rj − 1.
Base-line logits are defined by setting the sets Bj(mj, 0) to be equal to {aj1} and the sets
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Bj(mj, 1) to be equal to {aj(mj+1)} for any mj < rj .
For recursive or nested logits the sets Bj(mj, 0) and Bj(mj, 1) define a Coherent

Complete Hierarchy of Sets as specified in details in Cazzaro and Colombi (2006b).
Once logit types for the categorical variables A1 and A2 are specified, it is easy

to obtain the probabilities: p{1,2}(h1, h2;m1,m2) = pr(A1 ∈ B1(m1, h1), A2 ∈
B2(m2, h2)), m1 = 1, 2, ..., r1 − 1,m2 = 1, 2, ..., r2 − 1, h1 = 0, 1, h2 = 0, 1. A family of
generalized log-odds ratios, defined on the bivariate distribution of A1, A2, is composed
by the standard log-odds ratios ln

p{1,2}(1,1;m1,m2)p{1,2}(0,0;m1,m2)

p{1,2}(0,1;m1,m2)p{1,2}(1,0;m1,m2)
, m1 = 1, 2, ..., r1 − 1,

m2 = 1, 2, ..., r2 − 1.
When the same logit type is used for A1 and A2, a family of symmetric odds ratios is

defined, the family is asymmetric otherwise. A family of odds ratios is denoted by the
name of the logit type used for A1 and by the name of the logit type used for A2 (local-
global o.r., local-continuation o.r., etc.). If the same logit type is used for both variables
the name is not repeated (local o.r., global o.r., continuation o.r., etc.).

Given a vector x = (x1, x2, . . . , xq)
′ of q components, xM is the vector with

components xj : j ∈ M. The notation 1M indicates a vector of ones of dimension
equal to the cardinality |M| ofM, the dimension is not specified when it is clear from the
context. If xM∪I is a vector such that: xM = hM, xI = kI we write xM∪I = (hM,kI).

In order to introduce in full generality the generalized marginal interactions we define
the marginal probabilities: pM(hM;mM) = P (Aj ∈ Bj(mj, hj), ∀j ∈M), wheremM
is a row vector of integers mj, 1 ≤ mj < rj, j ∈ M, and hM is a row vector whose
elements, hj, j ∈M, are equal to zero or to one; these probabilities are probabilities in a
contingency table where the variables Aj, ∀j ∈M, have been dichotomized according to
the categories Bj(mj, 0) and Bj(mj, 1) and where the variables Aj, ∀j /∈ M, have been
marginalized. Note that different mM denote different tables while different hM denote
different probabilities within the same table. In general Bj(mj, 0)∪Bj(mj, 1) ⊂ Aj , thus
the probabilities of the above mentioned tables do not always sum to one.

The generalized marginal interactions ηI;M(mI) are standard baseline log-linear
interactions defined in the previous marginalized and aggregated tables. A formal
definition of the generalized marginal interactions is:

ηI;M(mI) =
∑
K⊆I

(−1)|I\K| log pM(0M\K,1K;mI ,1M\I). (1)

The type of logits adopted for each variable should carry over when defining higher
order interactions within the same marginal distribution, but not necessarily between
different marginal distributions.

2.2. Bartolucci Colombi Forcina main result

Generalizing a previous result of Bergsma and Rudas (2002), Bartolucci, Colombi and
Forcina ( Bartolucci et al. 2007) have proved that the interactions ηI;Mk

(mI), ∀I ∈
Fk, ∀Mk ∈ H, where mI is a row vector of integers mj, mj = 1, 2, ...rj − 1, ∀j ∈ I,
parameterize the joint distribution of the q categorical variables. Any parametrization
in function of a family of generalized marginal interactions associated to a complete
hierarchical family of interactions is a Hierarchical Multinomial Marginal model HMM .

When the data come from S different strata, a vector ηs, s = 1, 2, ..., S, of generalized
marginal interactions is defined within each stratum and then the differences between
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strata are described by the linear model ηs = Xsβ, s = 1, 2, ...S, whereXs is a matrix
of covariates that describes the s − th stratum. It is easy to see that HMM models are a
special case of the HLP models introduced by Lang (2005). Altough HMM models have
been developed regardless of the HLP models of Lang (2005) looking at them as special
cases of HLP models allows us to consider sample sizes of some strata as random and
enables us to resort to the general asymptotic and computational results of Lang (2004,
2005) (see also Cazzaro Colombi, 2008). Note however that the main difference with
HLP models is that in HMM models the link function is invertible.

3. Parameterization of block recursive multinomial models

Examples of block recursive models have been examined in Bartolucci et al. (2007
sec. 2.4) because they represent an interesting setting to show how hierarchical family
of marginal sets, complete hierarchical family of interaction sets and the associated
generalized marginal interactions can be defined in practice. An application of these
models to real data can also be found in Colombi e Forcina (2001). In this section
we take a more general approach and we show the usefulness of the HMM models to
parameterize the block recursive multinomial models specified by the Lauritzen, Wermuth
and Frydenberg (LWF) Markov properties (Frydenberg, 1990) or by the Andersson,
Madigan and Perlam (AMP) Markov properties (Andersson et al., 2001) associated to
a chain graph. As in section 2, sets of variables together with their joint distribution
will be denoted by sets of integers. Let G be a chain graph having the sets of vertices
Q = {i : i = 1, 2, ..., q} and with chain components denoted by τm,m = 1, 2, ..., s.
Given a subsetM of vertices of a graph G, paG(M), ndG(M), nbG(M), clG(M) will
denote the sets of parents, non descendants, neighbours and the closure ofM respectively.
Let Gm be the subgraph induced by the chain component τm. When Gm is not complete,
Cm denotes the family of complete subsets andDm the family of connected subsets of τm.
Furthermore K is the directed acyclic graph having the chain components τk as vertices.
In this graph, τh is a child of τk if ∃i ∈ τh : paG(i) ∩ τk 6= ∅. It is assumed that the
numbering of the chain components is such that the number m of a parent τm is smaller
than the ones of its children and finally let it beMm = ∪mi=1τi, m = 1, . . . , s,M0 = ∅.
For a less concise review of this graph-terminology see Andersson et al. (2001) and
the bibliography herein quoted. A joint probability function π is a LWF block recursive
model associated to the graph G iff it satisfies the following conditional independencies
(Andersson et al., 2001):

τm ⊥⊥ Mm−1 \ paK(τm)|paK(τm)[π] (2)
∀m : m = 2, . . . , s,

S ⊥⊥ paK(τm) \ paG(S)|(paG(S) ∪ nbG(S))[π] (3)
∀m : m = 2, . . . , s, ∀S ⊆ τm,

S ⊥⊥ (τm) \ clGm(S)|paK(τm) ∪ nbG(S)[π] (4)
∀m : m = 1, . . . , s, ∀S ⊆ τm.

A joint probability function π of Q is an AMP block recursive model associated to the
graph G iff it satisfies (2,4) and the following conditional independencies (Andersson et
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al., 2001):

S ⊥⊥ paK(τm) \ paG(S)|paG(S)[π], ∀m : m = 2, . . . , s, ∀S ⊆ τm. (5)

At first we consider the case where every Gm is complete that is when τm \ clGm(S) = ∅,
∀S ⊆ τm, m = 1, 2, . . . , s, so that (4) is empty. To specify HMM models, for
which the LWF conditional independencies (2,3) are equivalent to the nullity of some
generalized marginal interactions, let us introduce the following family of marginal sets
Pm,τm = paK(τm) ∪ τm, and Mm, m = 1, . . . , s. The previous marginal sets must be
ordered by increasing the index m. Moreover for a given m the marginal set Pm,τm ,
must precede the marginal setMm. IfMm−1 = paK(τm),Mm must not be considered
because this marginal set is a duplicated of Pm,τm = paK(τm) ∪ τm. It is easy to see that
this order satisfies the definition of section 2 and so the previous marginal sets can be
used to define a complete hierarchical family of interaction sets in the following way: i)
to Pm,τm is associated the family of interaction sets F∗m,τm = {I : I = P ∪ S, ∀P ⊆
paK(τm),∀S ∈ P(τm)},m = 1, 2, ..., s, ii) to every marginalMm is associated the family
of the interactionsFm = {I : I = P∪S, ∀P ∈ P(Mm−1)\P(paK(τm)), ∀S ∈ P(τm)}.
To express the hypotheses (2) it is convenient to use logits of log-linear type (local or base-
line) within every interaction family Fm. Moreover having in mind the hypotheses (3), it
is useful to define the interactions within every F∗m,τm by using local or base-line logits
for the variables not belonging to τm and logits of any type for the variables in τm. From
standard results on graphical modeling it follows that (2) is equivalent to the nullity of the
interactions for every interaction set I belonging to Fm and that ( 3) is equivalent to the
nullity of the interactions defined in F∗m,τm for every interaction set not belonging to the
subset {I : I = P ∪ S, ∀S ∈ P(τm), ∀P j

⋂
s∈S paG({s})}.

We now define a HMM model for which the AMP conditional independencies (2,5)
are equivalent to the nullity of some generalized marginal interactions. To this end let us
consider the following family of marginal sets: Pm,S = paK(τm) ∪ S, ∀S ∈ P(τm),
Mm, m = 1, . . . , s. The previous marginal sets must be ordered by increasing the
index m. Moreover for a given m all the marginal sets Pm,S , ordered coherently with
the partial order of inclusion, must precede the marginal setMm. IfMm−1 = paK(τm),
Mm must be omitted. It is easy to see that this order satisfies the definition of section 2
and so the previous marginal sets can be used to define a complete hierarchical family
of interaction sets in the following way: i) to every Pm,S is associated the family of the
interactions Fm,S = {I : I = P ∪ S, ∀P ⊆ paK(τm)}, ii) to every marginal Mm is
associated the same family of interactions Fm = {I : I = S ∪ P, ∀S ∈ P(τm), ∀ P ∈
P(Mm−1)\P(paK(τm))} introduced for the LWF models. To express the hypotheses (5)
it is convenient to define the interactions within every Fm,S by assigning local or base-
line logits to the variables not belonging to S and logits of any type to the variables in
S. Note that in this way local or base-line logits are always assigned to variables not in
I. For every m, the interactions defined within the families Fm,S define a Glonek and
McCullagh (1995) multivariate logit model for the joint distribution of the variables in τm
conditioned by the variables in paK(τm).We have already seen that (2) is equivalent to the
nullity of the interactions for every I belonging to Fm. Moreover from standard results
on graphical modelling it follows that (5) is equivalent to the nullity of the interactions
for every interaction set not belonging to the subset {I : I = P ∪ S, ∀P ⊆ paG(S)} of
Fm,S , ∀S ∈ P(τm), m = 1, . . . , s.
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When the Gm’s are not complete, to satisfy the further set of conditional
independencies (4), the interactions associated to the sets {I : I = P ∪ S, ∀P ⊆
paK(τm), ∀S ∈ P(τm) \ Cm} of F ∗m,τm must be equal to zero. These interactions are
parameters of the LWF models but, in the case of AMP models, they are not because
these interactions are already contained in the sets Fm,S , S ∈ P(τm). Thus the previous
constraints do not involve interactions associated to the complete hierarchical family of
interaction sets Fm,S, ∀S ∈ P(τm), Fm,m = 1, 2, ...s introduced to parameterize the
AMP model. The previous drawback of the AMP models is avoided if the undirected
graph Markov property (4) is replaced by the bi-directed graph Markov property S ⊥⊥
(τm) \ clGm(S)|paK(τm)[π], ∀S ∈ Dm, m = 1, . . . , s. From a result due to Lupparelli
et al. (2008), it follows that the previous Markov property is equivalent to the nullity
of the AMP interactions that are associated to the sets belonging to Fm,S , ∀S /∈ Dm,
m = 1, . . . , s. All the constraints so far specified for LWF models and AMP models can
be expressed in the form C ln(Mπ) = 0 as shown by Bartolucci, Colombi and Forcina
(2007) and, under these constraints, the multinomial log-likelihood can be maximized
as shown by Lang (2004,2005). To clarify the previous definitions for AMP models
we consider the seemingly unrelated logit regressions of Cox and Wermuth (1996),
represented by the graph of figure 1.

Figure 1: AMP Markov conditional independencies graph for the Cox, Wermuth
seemingly unrelated logit regressions

A2 A4

A1 A3

-

-

The variables A1 and A2 are explanatory for the variables A3 and A4 and the four
variables are assumed to be ordinal. In this simple example there are no conditions (2,4)
because the graph has only two complete chain components. The conditions (5) state that
A4 is independent of A1 given A2 and that A3 is independent of A2 given A1. These
conditional independence hypotheses can be expressed by linear equality constraints on
the parameters of the HMM model reported in Table 1.

In the column inter. sets the variables involved in the interactions are reported and
the column marg. sets describes the marginal distribution where the interactions are
defined. For every interaction the type column describes the logits, the log-odds ratios
and the higher order interactions used. The labels have the following meanings: g is a
global logit, gg is a global log-o.r., lg is a local-global log-o.r., the other symbols are
generalized interactions of higher order described in details in Colombi and Forcina,
(2001). In particular, llg are contrasts of four global logits and llgg are contrasts of four
global log-odds ratios. In Table 1 (=) denotes the interactions constrained to be null by
the conditional independence hypotheses.
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Table 1: A parametrization of the Cox, Wermuth seemingly unrelated logit regressions
model

inter.sets marg.sets type inter.sets marg.sets type
A1 A1, A2 g A4 A1, A2, A4 g
A2 A1, A2 g A1, A4 (=) A1, A2, A4 lg

A1, A2 A1, A2 gg A2, A4 (+) A1, A2, A4 lg
A1, A2, A4 (=) A1, A2, A4 llg

A3 A1, A2, A3 g A3, A4 A1, A2, A3, A4 gg
A1, A3 (+) A1, A2, A3 lg A1, A3, A4 A1, A2, A3, A4 lgg
A2, A3 (=) A1, A2, A3 lg A2, A3, A4 A1, A2, A3, A4 lgg

A1, A2, A3 (=) A1, A2, A3 llg A1, A2, A3, A4 A1, A2, A3, A4 llgg

4. Other applications of HMM models

As shown by Bartolucci et al. (2007) and Colombi and Forcina (2000, 2001) among
many others, inequality constraints are a fundamental tool to specify hypotheses of
stochastic dominance, monotone dependence and positive association in contingency
tables. The great flexibility of HMM models, in modeling such type of hypotheses,
is highlighted by Bartolucci, et al. (2007), Colombi and Forcina (2001), Bartolucci et
al. (2001), Cazzaro and Colombi (2006a, 2006b). These works have in common the
problem that the likelihood ratio statistics to test inequality constrained models has a
non standard asymptotic distribution, called chi-bar squared, which is a mixture of chi
squared distributions. The book of Silvapulle and Sen (2005) is an updated survey on
testing inequality constraints. For example in the seemingly unrelated logit regressions
example of Cox, Wermuth (+) in Table 1 denotes the interactions constrained to be non-
negative under the hypothesis of monotone positive dependence of A3 on A1 and of A4

on A2. More recently Cazzaro et al. (2007), Colombi and Giordano (2006, 2008) have
shown the usefulness of HMM models for modeling hypotheses of Granger-non causality
and lumpability in multivariate Markov chains and Hidden Markov Models.
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