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In questo lavoro viene analizzato il processo di costruzione di un indicatore composto, 

in funzione di una batteria di indicatori semplici. Tale processo viene scomposto in due 

parti: la prima consiste nell’individuare delle funzioni che permettano di trasformare i 

dati grezzi (gli indicatori semplici) in dati omogenei, la seconda nell’individuare una 

funzione che sulla base dei primi produca una misura dell’indicatore composto. 

Vengono forniti, da un lato, degli strumenti matematici e statistici delle trasformazioni 

più usate nelle applicazioni (con particolare riguardo alle trasformazioni lineari) e, da un 

altro lato, diversi esempi di indicatori composti ottenuti tramite funzioni additive e non. 
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1. Introduction 
 

The main purpose of this work is to explore simple mathematical and statistical 

mechanisms to build and to investigate multiple component (item) scales or composite 

indicators. Composite indicators have to measure a complex and underlying concept, 

usually named construct, which is not directly measurable, so it is broken into 

measurable components, dimensions or items. Multiple component scales are usually 

named in clinical trials, psychometrics, medicine, etc. while composite indicators are 

named  in social and educational sciences, in environmental setting, in scientometrics, 

etc.. The literature on this topic is vast and interesting. Investigation has been carried out 

according to different criteria: the type of scales, the field of application together with 

the scientific background of the author, the nature and the structure of the data, and the 

aim of the study (Fayers & Hand, 2002). 

Another approach, based on functional analysis and usually named dimensional 

analysis, represents a breakthrough in the theory of scales and indicators (Aczél, 1987; 

Luce et al., 1990). They provide a list of theorems which give the mathematical 

conditions to construct different types of scales. Our approach is much simpler: it 
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consists on the description of some actual paths to combine the items (simple indicators) 

into a scale (composite indicator), in the attempt to express the final result in a 

meaningful way. 

The paper is divided into two parts to better explain how we shall proceed to pursue our 

proposal. First, we deal with some issues concerning data transforming, confining our 

attention to transformations T’s aiming at the comparability of different data sets. 

Second, we deal with the process of reconstruction of single indicators to composite 

indicator, through a link function f. Therefore, the first function T allows to obtain 

dimensionless data  that, through the second function f, can be put together into one 

thing, which is the measure of the construct or of the latent variable X. 

To explicit the purpose of this work we shall attempt to answer some questions: why 

and where (in what cases) these T’s are widely used? what properties do statistical 

transformation must have? (to be friendly); what distinguishes linear transformations 

from non linear transformations? which statistical properties should be valued most with 

regard to the aim of the study? what are the most common mathematical functions f that 

recompose the transformed data into something relevant in practical usage? what is the 

relationship between the transformation T and the link function f? why has the class of 

additive function f been so widely used? when the class of non additive functions f 

appropriate? In other words, the relationship between T and f can be written: 

 

X = f [T1(x1), T2(x2), …, Tk(xk)]      (1) 

 

Where xi is the ith simple indicator or item, Ti is the ith  transformation and f is the link 

function. Section 2 illustrates some general issues about transformations, Section 3 

specific transformation issues to compare different batches of data; Section 4 linear 

transformations; Section 5 non linear transformations and Section 6 is about link 

functions.  

 

 

2. General Issues of Data Transformations 
 

There are many reasons why we might want to transform (or re-express) data. Actually 

data transforming is almost necessary whenever we are in presence of statistical data, 

and the objectives of such operation are usually more than one. Even data transforming 

is almost always present in any statistical analysis, there are no books, to our knowledge, 

that are entirely devoted to that topic. Several books assign a special chapter to 

transforming data, and, on the other hand there is an enormous number of papers about 

transformations which usually describe special cases, mostly related to reconduct a set 

of data to the assumptions of the linear model. (Kendall & Stuart, Ch.37, 1983). In 

applied works, especially, small paragraphs are usually devoted to transformation issues 

and data are often transformed automatically, just repeating what has already been done 

in that field. Log transformation is sometimes applied without any explanation. 

Actually, from a statistical point of view transformation itself is a twofold concept, 

concerning both mathematics and statistics. Transformation itself, as a mathematical 

operation, is usually put aside by statisticians, so, for instance, the Encyclopaedia of 

Statistical Sciences, item Transformations, says "The general effect of a transformation 



 

depends on the shape of its plotted curve or a graph. It is this curve, rather than the 

mathematical formula, that has central interest". Here the idea is to design a new model 

or a new data set that has important aspects of the original ones and satisfies all the 

assumptions for the new model. Therefore emphasis is most of the times devoted to the 

effects of transformation rather than to the relationship between transformed data and 

original data. In fact a central issue in the statistical literature is addressed to determine 

the correct distributional form to apply a specific statistical method, so the statistical 

literature addresses the benefits of transforming with regard to statistical modelling, 

neglecting some relevant aspects. 

The book Understanding Robust and Exploratory Data Analysis (Hoaglin et al., 1983) 

has been a breakthrough because it carries out a new point of view. Following a robust 

approach, they provide a collection of papers dealing with data transforming. So 

transformations are not anymore confined to the problem of linearizing or of removing 

heteroscedasticity, either in the ANOVA setting or in the time series analysis, but they 

deal with several aspects of data analysis. The authors provide Robust and Exploratory 

Data Analysis methods and tools to: enhance interpretability, get symmetry, get stable 

spread, give a better graphical representation, and, generally speaking, obtain simple 

data structure. 

To compare sets of data consisting of amounts or counts, T’s ought to have the 

following characteristics: 

(i) Smoothness. Actually we do not refer to the usual meaning of smoothness in 

calculus, (i.e. they  have derivatives of all orders), but here the meaning is 

slightly different. The T functions ought to: a) be elementary and well known; b) 

have a widespread usage in practice; c) preserve the order of any batch of data 

(so percentiles are transformed to percentiles); 

(ii) Computational ease. Their usage needs just some elementary calculus; 

(iii) Comparability to the original data. They ought to re-express a set of data in a 

nearly comparable way to the original data set; 

(iv) Resistance. It seems appropriate to refer to resistance instead of robustness 

because transformations do not involve a breakdown of modelling assumptions. 

An estimator is defined resistant if it is affected to only a limited extent either by 

a small number of gross errors or by any number of small rounding and 

grouping errors, likewise a linear transformation T could be defined resistant if 

it is affected by only a limited extent by a small number of outlier observations 

(Hoaglin et al., Ch. 11, 1983). So according to this definition, the formula T can 

be defined resistant only if it contains resistant parameters. In practice, it is 

desirable that  the operation of transformation does not let that a strong 

asymmetry or outliers have effect on a big bulk of the new data set. 

 

 

3. Transformations to construct Composite Indicators 
 

The aim of this paper is to provide a content which allows to compare the most used 

transformations in practical applications according to their statistical and mathematical 

properties. Therefore we need to introduce briefly some issues: 

− definitions of transformations and mathematical properties; 
− characteristics of xi (direction, units of measure, magnitude); 



 

− other features (geometry, scales of measurements, statistical Properties). 
Definitions of Transformations. In general, transforming means to change a set of 

objects, numbers or geometric entities, into an other set according to some rule or law. 

There are some transformations which work on algebraic objects by a one-to-one 

function between two sets. A transformation of the batch x1, x2, …, xk, is a function T  

that replaces each xi by  new value T(xi) so that the transformed values of the batch are 

T(x1), …, T(xk). T is usually elementary, strictly increasing, continuous and 

differentiable. 

Sometimes in the statistical literature transformation and standardisation are used as 

synonymous. Actually standardisation techniques or methods are used to adjust for the 

effects of some factors as age or sex, when the objective is to compare populations or 

samples with different factor structures (Inskip, 1998). 

Characteristics of xi’s. First, it is important to stress each variable xk is measured with 

different direction,  magnitude and units of measure, where: a. direction concerns the 

algebraic sign of the i-th variable versus the latent variable X: if high values of x yield 

high values in x the direction is concordant; while, if high values of x yield low values 

of x the direction is discordant; b. magnitude of x is equal to m, if x = a·10
m
; c. unit of 

measure is defined as a special fixed and conventional quantity.  

Data comparison must be done taking into account the group structure that a 

transformation involves and the statistical issues derived by that operation. Therefore 

our goal is to obtain T’s that are not relied to their original direction, magnitude and 

units of measure, i.e. they have to be dimensionless quantities. A number is 

dimensionless if it is just a number, not just as a result of same measuring process 

applied to some type of physical quantity. 

Other Features: 

(i) Geometry. From a geometric point of view, a transformation in which data 

vectors are transformed in a fixed coordinate system is called alibi transformation. In 

contrast, a transformation in which the coordinate system has changed, leaving vectors 

in the original coordinate system fixed while changing their representation in the new 

coordinate system is called alias transformation. In geometry there are several 

coordinate plane systems (oblique, Cartesian or rectangular, polar, elliptic cylindrical, 

and finally, parabolic). The most popular are Cartesian and polar coordinates. The 

choice of the coordinate system depends on the nature of the data, on the field of 

application and on the aim of the study. They determine the “best” geometrical 

representation and in this context, for instance, moving from a coordinate system to 

another one is a graphical appropriate way of re-expressing data. 

In this paper we deal just with first family of transformations. These belong to the affine 

transformation family, which preserve the collinearity and the distance ratios. 

(ii) Scales of measurement. Those one-to-one T’s have also a very interesting 

interpretation in terms of group structure and scales of measurement as suggested by 

Stevens (1946). He reports a Classification of Scales of Measurements, in which there is 

an interesting linkage between: scales, basic empirical operations, and mathematical 

group structure. Instead, dimensional analysis develops the latter approach to a larger 

extent (Luce et al., 1990). 

(iii) Statistical Properties. Therefore the selected T’s are just those handy and 

capable to address practical data analysis problem. We chose a list of mathematical and 

statistical properties in order to describe T’s: a. units and scale of measurements; b. 



 

main statistical parameters (mean, variance, range); c. reduction of variability 

compared to the original data; d. resistance, as defined above; e. field of application. 

At first the T’s can be classified into two families: linear T’s (LTs) and non linear T’s 

(NLTs). In this paper the concern is mostly given to the LTs, even if there will be a brief 

description of the most popular NLTs, for purposes of brevity. 

LTs permit to change the origin, the scale and the unit of measurements, but they do not 

change the shape. LTs re-express a value x {x: x ∈ ℜ+}in the form: 
 

T(x) = y = a + bx  ⇒ a, b ∈ ℜ+     (2) 

 

The most important characteristics of a linear transformation is proportionality. This is a 

very important property because it allows to save the same ratio between observations 

with a different origin (if a ≠ 0) and scale (b ≠ 0). In this paper we chose five simple and 
widely used LTs, labelled LT1, LT2, LT3, LT4, and LT5 (see Tables 1 & 2).  

Furthermore, we consider just one non linear transformation named Ranking Scoring 

(RS). 

 

 

4. Linear Transformations 
 

LT1 and LT2. LT1 is very common in any field of application because it is easy to be 

computed and it has a straightforward application and meaning. To divide by the 

maximum allows to cancel the physical units of the original quantities and forces the 

results into a shorter interval. 

Modifying LT1 with LT2 we get a mapping into the easiest [0,1], something attractive 

for standardization. LT2 is very often used in applied economics because it is a good 

way to compare spatial and/or temporal data with a reduction of range. LT1 and LT2 

determine a re-scaling of data into a shorter interval. Even if proportionality is 

maintained, LT1 and LT2 are not convenient in presence of strong asymmetry or in 

presence of outliers, because they comprise transformed data proportionally, so they 

might be very dense if the extreme values are outliers. Therefore LT1 and LT2 are not 

resistant, according to the definition above given, in fact LT1 is dominated by the 

maximum while LT2 is dominated by the maximum and the minimum. 

LT3, LT4 and LT5. The use of normal scores as conventional numbers was first 

suggested by R.A. Fisher and F. Yates in the Introduction to their “Statistical Tables”, 

first published in 1938. They introduce z-transformation, named Fisher transformation, 

to get a more treatable sampling distribution of the linear correlation coefficient. 

Standard scores are just a standard deviate (LT3) with mean equal to zero and variance 

to one. These values make LT3 very popular because of their interpretative ease and 

because of the comprising of variability. Moreover when the raw data are distributed 

normally or approximately normal, the z-transformation becomes the standard normal 

deviate. It tells us how far the single raw xi lies from its mean, measured in standard 

deviations, something very useful to compare different data set. 

 

 

 

 



 

Table 1: Synoptic table of LT1, LT2, and LT3 
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Another useful transformation (LT4), based on z-score, can be developed when the aim 

is to relate scores of a given group to the scores of a normative group, with given mean 

and given standard deviation. The resulting data shall be re-expressed and measured 

onto the new normative scale, with mean and variance given by normative group. LT4 is 

widely used in psychometric score tests. Both transformations, LT3 and LT4, are not 

very resistant because their computation involves the mean and the standard deviation. 

These parameters can be sometimes affected by the presence of outliers in the original 

data set. 

Finally, LT5 is similar to LT4, but in this case it uses the median as the location 

parameter and the MAD (median absolute deviation) as the scale parameter. The median 

and the MAD overcome the presence of outliers so LT5 is very resistant. 

 

 

 

 

 

 

 



 

Table 2: Synoptic table of LT4, LT5,  and RS. 

Property LT4 LT5 RS 
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5. Non Linear Transformations 
 

There are many reasons why we might want to make a NLT. An immediate reason is to 

linearize data through the logarithm transformation, in this way original data change 

their shape. As already said, NLTs help to obtain either standard statistical assumptions 

in the linear models or several other issues. For instance, if our goal is to change the 

units of measure, but also to change the basic scale of measurement, we need to modify 

the original distributional shape. Power transformations are a solution to alter the shape 

of the original structure. (Hoaglin et al., Ch. 4 & 8, 1983). 

Among non linear transformations there is also the rank transformation and the ranking 

scoring transformation (RST). The rank order of a set of N observations is the order in 

which they come when arranged according to the characteristic under study. The 

individual rank denotes the position of each one object onto the constituted ranking. A 

special case of the rank transformation is given by the percentile. In practice, the two of 

them have the same statistical meaning. The latter is easier to be interpretable because it 

varies between 1 and 100 and does not depend on N. The rank is usually treated as a 

class of monotone score functions that maps metric data to ordinal data. 



 

Ranking scoring is an operation that assigns scores to levels of ordinal variables. It does 

not treat scores as scaling of ordinal variables, but as values of interval variables. The 

most frequent application of ranking scoring is to assign scores to several items of a 

questionnaire. This is almost always done in customer satisfaction surveys. For instance, 

with four multiple response ordinal items as not at all, a little, quite a bit, very much, 1 

is assigned to the first category, 2 to the second, 3 to the third and, finally, 4 to the last 

category. The higher the score the higher is the level of  the degree of accordance with 

the item. Thus, the scores given to each response category are not treated anymore as 

ordinal but as metric numbers. In this way it is possible to add up them and derive the 

overall score of each responder over all items and/or the score of each item over all 

responders. Sometimes these scores are weighted to construct a weighted mean (Prieto, 

1996) but variability measures are usually avoided because their interpretation is 

somewhat difficult. 

 

 

6. The Link Function 
 

In this section there are several examples coming from statistical everyday practice of 

constructing composite indicators. 

Example 1. An additive LF is utilised by the financial newspaper Il Sole 24ore in the 

survey Qualità della Vita on the 103 Italian Provinces. Assuming equal weights and 

independence between simple indicators, they sum over 36 indicators xi, using two types 

of T’s, the first is a LT while the second is a NLT: 

 

X = f [T1(x1), …, T1(x21), T2(x22), …, T2(x36)] 
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Therefore LF is given by summing up 21 directly proportional quantities plus 11 

inversely proportional quantities. This operation is not appropriate from a mathematical 

point of view because it produces a result whose mathematical relationship to the 

original xi’s is not definable. An easy solution to overcome this problem is modifying 

the NLT into a LT as: 
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In this way LF is an additive function which sums over 36 LT3’s (Attanasio and 

Capursi, 1997). 

Example 2. Instead, several American studies on Quality of Life use a procedure that 

“converts all variables to the same unit of measure and it allows neighbourhood scores 

to be added to derive an overall or composite score based on multiple variables. Some of 

the variables used in the analysis were inverse measures of the quality of life, i.e., a high 

value indicated a low quality of life condition. The signs of the Z scores for these 

variables were reversed before summing scores for several variables to derive an overall 

or cumulative score for the quality of life” (www.charmeck.org/…/2002 

+Quality+of+Life+Study.pdf). In this case X takes the following form: 

 

X = f (T1(xi), T2(xj))   where   
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T1 is used if xi is concordant to X, while T2 if xj is discordant to X. 
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Example 3. DI (Discomfort Index) is an empirical tool used in physics to measure the 

indoor (dis)comfort combining the air temperature (x1) and the humidity (x2). Here the 

(1) takes the form: 

 

X = f(T1(x1), T1(x2))   and T(xi) = xi  i = 1, 2. 

 

X = x1 – (0.55*(1 – 0.01x2)*(x1 – 14.5)). 

 

LF is a polynomial of degree 2 obtained by means of empirical analysis. 

Example 4. ROC (Receiver Characteristic Curve) is an empirical tool used in clinical 

epidemiology to measure the relationship between sensitivity (i.e. true positive rate) and 

specificity (i.e. 1 – false positive rate) of a screening test, measured at different levels. 

By construction, sensitivity and specificity are discordant, because each of them can 

only be increased at the expense of the other (Fletcher et al., 1982). The (1) takes the 

following form: 

 

X = f(T1(x1), T2(x2))  x1 = true positive rate;  x2 = true negative rate 

 

T1(x1) = x1 = sensitivity T2(x2) = 1 - x2 = specificity   

 

AUC (Area Under the Curve) = X = ∫
100

0

)( dzzf   f(z) = x1 = 1 – x2 

 



 

The ROC gives equal weight to sensibility and specificity, even if it is rare to find 

situations where false positive cases and false negative cases can be valued equally. 

Example 5. Body Mass Index (BMI) is an empirical tool for indicating weight status. It is 

a medical diagnostic tool: as BMI index increases, the risk for same disease increases. 

So: 

 

X = f(T1(x1), T2(x2))  where   x1 = weight in Kg; x2 = height in 

cm 

 

T1(x1) = x1 T2(x2) = 
2
2x    

2
2

1

x

x
X =  

In this case T1 is linear, T2 is non linear and LF is multiplicative. 

Example 6. Customer Satisfaction (CS) questionnaires usually content questions/items 

with different number of categories assuming every item has equal importance. For 

simplicity, they can be ranked in this way: 

 

Item 1:   Yes    No 
Rank:  2   1 

 

Item 2:   very much   quite a bit   a little  not at all 
Rank:   4   3   2  1 

 

If RST is utilised then a measure of CS is given by summing over the scores of the two 

items for each respondent. As usual (1) takes the form: 

 

X = f(T1(x1), T2(x2))  x1 = score item 1;  x2 = score item 2 

 

And to eliminate their different magnitudes, it is possible to transform as: 
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Moreover to obtain total scores in the interval [0, 1] in presence of k items, LF can be 

written as an arithmetic mean: 
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Example 7. Another attractive application of the scale obtained by means of RST is the 

Formula One World Championship, where scores (points) are assigned according to the 

arrival placement for each Grand Prix. The points assignment rule (PAR) is rather 

peculiar, in fact it is neither proportional to the time race, nor to the usual one-to-one 

step ranking. In addition, PAR was changed in the 2003 season to let the championship 

be more challenging and attractive till the last races (Table 3). 

 



 

Table 3. Points by place. Formula One World Champ. 

Place Points before 2003 Points 2003 

1 10 10 

2 6 8 

3 4 6 

4 3 5 

5 2 4 

6 1 3 

7  2 

8  1 

 

So, following the usual formula, we get the 2003 total seasonal score, over 16 races: 

 X = f(T(x1), …, T(x16)) xi = place i-th race;     T(xi) ⇒ assigned points (Table 3) 
 

∑
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In this way PAR’s might be seen as a weighted RST, whose weighting system is rather 

empirical (or arbitrary). Instead the LF is simple additive. 

 

 

7. Conclusions 
 

Did we give reasonable answers to the questions stated in the title and in the 

introduction of this paper? The answer is probably yes and no, because actually we 

made an attempt to formalize the process of constructing a composite indicator from a 

batch of single indicators, by means of two steps: transforming non homogeneous data 

& gathering data transformed. Answers to the first step are in the counselling table 

which provides some pros and some cons to the most widely used transformations. This 

task does not seem easy. The answer to the second step comes from a pragmatic 

approach: additive functions are much more used than the non additive even if there are 

reported several examples of practical applications which can be considered hints for 

further extensions. Actually there is an evident lack of theoretical and general bases, and 

the linkage between first step first and the second one has not been explored in depth. In 

this direction dimensional analysis might provide interesting clues. 
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