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Riassunto. Si considera la matrice dei punteggi -con risposte politomiche su scala 

Likert- ordinata in base ai totali di riga e colonna. Si presentano due risultati concernenti 

le corrispondenti (stime di massima verosimiglianza delle) misure di Rasch di item e di 

soggetto. 1) La piena ordinabilità dei patterns di risposta è la nota condizione di 

struttura di Guttman perfetta (PGS); si introduce la nozione di struttura di Guttman in 

senso debole (WGS; una PGS è, a maggior ragione, una WGS) e si mostra che essa 

identifica -per certi versi paradossalmente- la condizione di non esistenza delle misure 

di Rasch. 2) Punteggi totali su scala Likert e misure di Rasch sono messi a confronto da 

un punto di vista dell’ordinamento. Mentre il Rating Scale Model mantiene una 

relazione di co-monotonicità, ciò non accade per il Partial Credit Model.       
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1. Introduction 
 

Unobservable latent traits such as consciousness, dependence, achievement, interest, 

aptitude, needs, preferences, etc., - here referred to, generically, as ‘ability’, from now 

on - are hypothetical constructions that have to be defined operationally by the methods 

used to measure them. Typically, the measurement of the ‘ability’ may be deduced from 

the responses of the subject to a suitable set of stimuli (items). Following a very 

common testing practice, numbers are used to ‘score’ the item responses; in particular, 

in this paper we shall consider the case of polytomous ordered item scores, with a fixed 

number of answer categories. Let the ordered categories mh ,...,,...,, CCCC 10  be scored, 

respectively, with the numbers m ..., ,h ..., , ,10 . Then a total score (or simple unweighted 

sum score or raw score, or Likert score) is obtained by adding up these numbers, for 

each respondent and each item. Obviously, simply adding integer scores does not 

guarantee a proper scale. The transformation of the total scores into Rasch ‘measures’ 

will be considered in this paper. In particular, we shall refer to the two most popular 

polytomous Rasch models: the Rating Scale Model (RSM) and the Partial Credit Model 

(PCM). 

It is known that Item Response Theory (IRT) models have a number of advantages over 

the classical test theory models. In particular, for the Rasch models these include the 

following remarkable facts: 1) interval-level measurements (moreover, under weak 

conditions Fischer, 1995, proved that the only IRT model that will produce interval-

level measurement is the Rasch model); 2) test-free/sample-free measurements (also 

called person invariance of item parameters and item invariance of person parameters), 

i.e. the measure of the ability of the respondents does not depend upon the set of items 



selected for the test and, symmetrically, the measure of the –let us say- ‘easiness’ of the 

items does not depend upon the particular set of respondents; 3) estimate of a standard 

error of each item/person measurement and a control over the item (and the test) 

information function; 4) Rasch models can be falsified.  

Let the items be ordered according to their total scores. Then, as the individual response 

pattern is consistent with  the ordering of the items, the person total score can be used to 

serve as a means of measuring the construct (for a recent comparative study considering 

the efficiency of the total scores -in the dichotomous case- see Cox and Wermuth, 

2002). What difference is to be expected between raw scores and Rasch-based measures 

from a rank order point of view? As proved in section 3, the answer depends on the 

model chosen (and perhaps on the method of estimation too) and unlike the 

dichotomous case, there may be a lack of co-monotonicity between the two methods of 

scoring, when we consider the case of polytomous Rasch models. 

Regarding the above mentioned principle of ‘consistence’, the lack of order in the 

response pattern is a cause of misfit. By a standard procedure of Rasch Analysis, 

disordered response patterns -e.g. patterns of respondents that tend to obtain low scores 

on easy items and vice versa- are considered ‘odd’ (unexpected) and are excluded from 

the sample, for the sake fitting in with model. In this sense, Theorem 1 in the next 

section describes the somewhat surprising situation of a trouble due, paradoxically, to a 

pathological ‘excess’ of ordering in response patterns. 

 

 

2. Guttman Scaling and ill-conditioned data matrices 
 

Typically, IRT assumes an unidimensional latent trait -a single dominant construct 

triggering a response behavior pattern. The Guttman scaling is also based on the idea of 

a unidimensional scale. If items are dichotomously scored, in a perfect (deterministic) 

unidimensional scale the pattern of the responses of a subject can be exactly reproduced 

simply by knowing his total score – if the items are ordered according to the total 

scores.  

 

Perfect Guttman Structure (PGS). The response matrix satisfies the PGS if, for each 

pair of respondents, A and B, A endorses all items endorsed by B. 

 

As a consequence of the PGS, the total score of A is higher (not lower) than the total 

score of B (note that ties are allowed). This principle may be easily extended to the case 

of polytomously scored items by dichotomizing the data at each possible item response 

level - i.e. by merging the categories from 0C  to 1C −h  into a new category with score 0, 

and the categories from hC  to mC  into a new category with score 1 h( m,...,1= ). The 

condition of PGS for a response matrix with polytomously scored items is said to be 

satisfied if and only if, for each pair of respondents, A and B, and for every h, 

h m,...,1= , A endorses all items endorsed by B.  

A slightly weak condition may be introduced (obviously, the PGS is seldom found in 

practice). The following notion refers to binary data - but analogous extension to the 

case of polytomously scored items is possible, as above.  

Weak Guttman Structure (WGS). The response matrix satisfies the WGS if a partition 

exists (that may not be unique) of the set of the respondents into two non-empty subsets, 



1G  and 2G , so that for each pair of respondents, A and B, A endorses all items 

endorsed by B, whenever A belongs to 1G  and B belongs to 2G . 

 

Clearly, the PGS implies the WGS. Interestingly enough, the Guttman scaling is strictly 

related to the structure of an ill-conditioned response matrix, i.e. a matrix for which the 

Rasch measures do not exist. Here Rasch measures is intended to denote the maximum 

likelihood (ML) estimates of the item/person parameters, when PCM is used. In this 

sense, in theory, the Rasch measures are not always well-defined. The following 

theorem is a straightforward consequence of the WGS notion and a recent result 

(Bertoli-Barsotti, 2004). 

 

Theorem 1. Let the response matrix be admissible (i.e. without null categories). Then 

the Rasch measures are not defined if and only if the response matrix satisfies the WGS. 

 

 

3. Rasch measures vs total scores 
 

In the last few years several papers have been devoted to the comparison of Rasch 

measures and total scores - from the point of view of precision, sensitivity to change, 

discriminating power, and so on (see, for instance, Raczek et al., 1998; Cook et al., 

2001, White et al., 2002). Authors are often confident of the somewhat minimal relation 

of co-monotonicity between the two scoring methods. This co-monotonicity has been 

recently proved by Bertoli-Barsotti (2003) for the case of the dichotomous Rasch 

model. The result remains valid both for conditional and unconditional ML estimation 

approaches. Nevertheless, an extension to the case of polytomously scored items is 

problematic: it may be proved that the property continues to hold for the RSM but not 

for the PCM.  

Let ihPυ  the probability of person υ , with person parameter υϑ , scoring h on item i -

characterized by the m threshold parameters ihδ  h( m,...,1= )- the PCM is defined by 
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When m=1 the dichotomous Rasch model is obtained; when tit πτ = , i t∀ ∀ , the PCM 

gives the RSM. 

 

Theorem 2. (i) The ML estimates of person and item parameters of the RSM are co-

monotone with the corresponding total scores. (ii) The ML estimates of person 

parameters of the PCM are co-monotone with the corresponding total scores.  

 



Sketch of proof. Let iυx′ )( imihii x,...,x,...,x,x υυυυ 10=  be the response vector, where ihxυ =1 
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and C. For the sake of convenience, let the data matrix be arranged so that r ↑= r , c ↑= c  

(where ↑v  denotes the vector v with its components in increasing order). Hence the 

proof of (i)-(ii) follows (see Bertoli-Barsotti, 2003) from the inequalities ≥
↑
)(ϑϑϑϑA )(ϑϑϑϑA , 

≥
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)( ππππαααα ,B1 )( ππππαααα ,B1 , by the invariance of 1C  with respect to rearrangements of 

persons and items and the invariance of C with respect to rearrangements of persons. 

 

Counter-examples may be given to prove that the co-monotonicity does not hold for the 

item parameters of the PCM. 
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