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Riassunto: Nel presente lavoro viene proposta una classe di modelli orientati all’analisi
di dati di tipo cattura-ricattura. Questi modelli possono essere visti come una genera-
lizzazione del modello di Rasch, nel senso che sono ottenuti indebolendo parzialmente
le ipotesi di base di tale modello:unidimensionalit̀a e indipendenza locale. L’approccio
proposto pùo essere utilizzato anche in presenza di strati creati sulla base di variabili
esplicative discrete. Per la stima dei parametri si propone un uso congiunto degli algo-
ritmi EM e Fisher-scoring e vengono discusse delle tecniche, basate sulla verosimiglianza
profilo, per ottenere degli intervalli di confidenza per la dimensione della popolazione.
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1. Introduction

A well-known method for estimating the size of wild populations is based on a sequence
of trapping experiments so that, to each subject marked at least once, it is possible to
associate acapture configurationu = (u1 · · · uJ ) whereJ is the number of capture
occasions anduj is equal to 1 if the subject has beencaptured at thej-th occasionand 0
otherwise. Once the data have been prepared, they can be summarized into a contingency
table witht = 2J − 1 cells, since the entry corresponding to individuals that were never
captured, obviously, cannot be filled.

Statistical models for analyzing such data have a long history and they are also ap-
plied to various social contexts where it is difficult or expensive to directly count indi-
viduals with a certain feature (disease, social problem); for a review see Schwarz and
Seber (1999). Darrochet al. (1993) and Agresti (1994) were among the first to propose
the use of the Rasch model. This model, originally conceived to analyze the results of
an aptitude test assigned to a group of subjects, is based essentially on two assumptions:
unidimensionalityandlocal independence. Though the Rasch model provides frequently
an adequate fit and has the advantage that the parameters can be easily interpreted, its
basic assumptions may be too restrictive.

In this paper, we review a class of models, introduced by Bartolucci and Forcina
(2001), that may be seen as an extension of the Rasch model which allows for lack of
unidimensionality and conditional association between pairs of lists. This class of model
is described in the following Section whereas maximum likelihood estimation is discussed
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in Section 3. Finally, the construction of confidence intervals for the population size is
described in Section 4.

2. The proposed class of models

Assume that subjects have been drawn at random from a population composed ofC latent
classes and letλc,u denote the probability that any subject in latent classc experiences the
capture configurationu. According to the Rasch model we have that

λc,u =
∏
j

euj(φc+ψj)

1 + eφc+ψj
, (1)

where thesubject parameterφc may be interpreted as a measure of the tendency to be
captured for individuals belonging to classc, while thelist parameterψj may be seen as
a measure of the effectiveness of listj. Moreover, the so-calledmanifest distributionis
given by

qu = Pr(u) =
∑
c

πcλc,u

whereπc is the probability of belonging to classc. So, we have two important restrictions:
(i) the ordering of latent classes with respect to the catchability is the same for any list
(unidimensionality); (ii) given the latent class, the events of being captured by different
lists are independent (local independence). However, (i) might hold only within disjoint
subsets of lists (see also Darrochet al., 1993) or, even conditionally on the latent class,
the probability of appearing in a given list might be larger or smaller if the subject has
already appeared in a related list. In these cases, a version of the Rasch model in which
restrictions (i) and/or (ii) are relaxed should be used. To implement a model of this kind
we adopt amarginal modelingapproach (e.g. Bergsma, 1997, Ch. 4) which is briefly
described in the following.

In the general case that subjects are divided intoS strata according to one or more
explanatory variables, letλs,c,u, πs,c andqs,u be the same quantity introduced above and
referred to a certain stratums. Then, denote byλs,c andqs the(t + 1) × 1 vectors with
elementsλs,c,u andqs,u for any u, respectively; we follow the general convention that
the elements of these vectors are ordered so that the entries of the binary vectoru with a
larger index run faster from 0 to 1. We now construct a vectorη for specifying the man-
ifest distribution{qs}. Let η = ( η′

1 η′
2 )′ whereη1 contains the logits of belonging to

the different latent classes within each stratum andη2 contains theJ univariate marginal
(relative to other lists) logits, theJ(J−1)/2 bivariate marginal log-odds ratios and higher
order effects of any conditional distribution givens andc. In practice,η2 is obtained by
stacking the vectorsη2,s,c = C log(Mλs,c) where the matricesC andM may be simply
constructed (see the Appendix of Bartolucci and Forcina, 2001). The vectorη is similar
to thelinear predictorof a generalized linear model in the sense that meaningful assump-
tions may be expressed by linear constraints, that is in the formη = Xβ. In this way
we may easily parametrize not only the Rasch model, but also a multidimensional Rasch
model, a Rasch model compatible with certain bivariate associations specified condition-
ally on the latent classes or a full latent class model. Obviously, any of these models
may be compared with the Rasch model through a likelihood ratio statistic that, under the
null, has, as usual, asymptotic distribution of chi-square type with appropriate degrees of
freedom. We may also implement the constraint that a subset of strata shares the same
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parameters so that, by modeling these simultaneously, a more parsimonious model may
be found (see Bartolucci and Forcina, 2001, Sec. 3, for details).

3. Maximum likelihood estimation

Let ys,u be the number of subjects in stratums with capture configurationu andns =∑
u 6=0 ys,u be the number of captures within stratums. If we assume that the frequencies

{ys,u} in the hypothetical table including the missing cell follow a multinomial distribu-
tion, β may be estimated by maximizing the conditional likelihood, given{ns}, whose
logarithm is

ly =
∑
s

∑
u6=0

ys,u log(qs,u/rs), with rs =
∑
u 6=0

qs,u;

see Sanathanan (1972) and Darrochet al.(1993). The conditional estimator ofNs, where
Ns denotes the size of the population in stratums, is the integer part ofns/r̂s which
maximizes the binomial likelihood. This can be usefully complemented with a confidence
interval derived on the basis of the unconditional profile likelihood (see the following
Section). To maximizely with respect toβ we propose to run the EM algorithm for a few
steps and then use its estimates as starting values for the Fisher-scoring algorithm.

The Fisher-scoring algorithm consists in updating the estimate at steph+ 1 as

βh+1 = βh + (F h)−1gh

whereβh is the estimate at steph andgh andF h are, respectively, the first derivative
vector and the expected information matrix evaluated at steph.

The EM algorithm alternates the following steps until convergence:

• E-step: on the basis of the current value of the estimate ofβ, compute the condi-
tional expected value of{xs,c,u}, given{ys,u}, wherexs,c,u denotes the number of
subjects within stratums which belong to latent classc and experience configura-
tion u;

• M-step: update the estimate ofβ by maximizing the complete log-likelihood,

lx =
∑
s

∑
c

∑
u
xs,c,u log(πs,cλs,c,u),

with the frequencies{xs,c,u} replaced by the corresponding expected values com-
puted at previous step; this can be performed again by a Fisher-scoring algorithm.

We follow this approach, based on the combined use of the two algorithms, since the
Fisher-scoring is much faster than the EM but extremely sensitive to starting values. We
experimented that 10 steps of the EM are usually enough to obtain good starting values
for the Fisher-scoring.

4. Likelihood-based confidence intervals

With a single stratum, a confidence interval for the population sizeN may be determined
from the profile unconditional log-likelihood as follows (see also Cormack, 1992):
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1. for each value ofN varying on a suitable interval of integers, evaluate the uncondi-
tional profile log-likelihood,ly(N), that is the maximum of

log(N !)−
∑
u

log(yu!) +
∑
u
yu log(qu), with y0 = N − n;

2. find the unconditional estimate ofN , N̂U , as the value ofN that maximizesly(N);
3. a confidence interval at level100(1−α)% forN is given by(N1, N2) whereN1 and
N2 are chosen, respectively, as the largest integer smaller thanN̂U and the smallest
integer greater than̂NU , so thatD(N1) ≥ χ2

1,α andD(N2) ≥ χ2
1,α, whereD(N) =

2{ly(N̂U)− ly(N)} andχ2
1,α is the100α% critical value on theχ2

1 distribution.

When there are two or more strata we suggest to set up a confidence interval for any
Ns by performing the procedure above withly(N) replaced byly,s(Ns), wherely,s(Ns)
is the unconditional profile log-likelihood where eachNh, for h 6= s, has been replaced
by the conditional estimatenh/r̂h. A refinement of this procedure consists in replacing
Nh, for h 6= s, with a more appropriate value than the conditional estimate, so that the
nominal confidence level is surely respected. This new procedure and its performances
are currently under investigation.

References

Agresti A. (1994) Simple capture-recapture models permitting unequal catchability and
variable sampling effort,Biometrics, 50, 494–500.

Bartolucci F. and Forcina A. (2001) The analysis of capture-recapture data with a rasch-
type model allowing for conditional dependence and multidimensionality,Biometrics,
57, 714–719.

Bergsma W.P. (1997)Marginal Models for Categorical Data, Tilburg University Press.
Cormack R.M. (1992) Interval estimation for mark-recapture studies of closed popula-

tions,Biometrics, 48, 567–576.
Darroch J.N., Fienberg S.E., Glonek G.F.V. and Junker B.W. (1993) A three-sample

multiple-recapture approach to census population estimation with heterogeneous catch-
ability, Journal of the American Statistical Association, 88, 1137–1148.

Sanathanan L. (1972) Estimating the size of a multinomial population,The Annals of
Mathematical Statistics, 43, 142–152.

Schwarz C.J. and Seber A.F. (1999) Estimating animal abundance: review iii,Statistical
Science, 14, 427–456.

– 40 –




