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Riassunto: La volatilita dei rendimente considerata una misura di rischio nei mercati
finanziari. Sono stati proposti in letteratura diversi esafati modelli parametrici per
I'analisi della volatilita, in grado di cogliere i principali e piimportanti aspetti strutturali
dei mercati finanziari. Come noto, questi modelli sono sdggktischio della errata spe-
cificazione. | metodi nonparametrici di tipo kernel, d’alparte, svincolano lo stimatore
della volatilita dalle specifiche ipotesi del modello, e sono utili sia aidirgtima, sia ai
fini della scelta e della verifica del modello parametricocambio, la difficola tecnica di
guesti stimatore rappresentata dalla selezione del parametro di smootiiegletermina
in modo cruciale la consistenza dei risultati. In quest@iawoi descriviamo gli aspetti
pratici di tale questione, e confrontiamo il classico metptlig-in proposto in letteratu-
ra per la scelta automatica del parametro di smoothing comuoro approccio basato
sull’'uso delle reti neurali. Presentiamo, infine, i ristilth uno studio di simulazione.

Keywords:. Volatility modelling, kernel estimators, bandwidth selen, dependent data,
neural networks.

1. Introduction

Since the ARCH model of Engle (1982), many sophisticated peaervolatility mod-
els have been proposed in the literature, which are ablegtuithe salient features
of the underlying economic structures. See, for exampke TAhRCH model of Zak@an
(1994), the QTARCH model of Gowroux and Monfort (1992), the GARCH model of
Bollerslev (1986), and so on. Nevertheless, there is alwalgnger that misspecification
of a model leads to erroneous valuation and forecasts. Oatllee hand, nonparametric
estimators of the volatility functions are not subject te tonstraints related to the spe-
cific models assumed, and they adapt naturally even to higijinear structures of the
underlying unknown functions. The utility of nonparame®stimators is twofold: first of
all, they give consistent estimations of the volatility tions (see HErdle and Tsybakov,
1997; Fan and Yao, 1998; Franke and Diagne, 2006); secotidly, can be used for
finding simple and appropriate parametric models or evenedsting them rigorously
(Kreiss and Neumann, 1999; Fan and Huang, 2001; @hah 2003).

In particular, kernel based regression estimators have gouperties, provided that they
are correctly implemented (Masry and Fan, 1997, Masry amdtiigim, 1995). The most
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appealing are the local polynomial estimators, which idelthe Nadaraya-Watson esti-
mator as a particular case. The main difficulty with these kihestimators is represented
by the selection of the smoothing parameter,ihedwidthof the kernel functionwhich
sensibly affects the consistency of the results.

In this paper, we study the problem of the selection of thémgdtbandwidth in kernel
based estimation of the volatility function. There are savapproaches for the estima-
tion of the optimal value of the bandwidth. The methods pegabso far in the literature
may be divided into two broad categoriesoss-validatiormethods anglug-in methods
(for a dependent data context, see for exampiedi¢ and Vieu, 1992, Hadt al., 1995,
Hart, 1996, Kim and Cox, 1997, 8kd, 2000, Masry and Fan, 1997). The plug-in ap-
proach is based on an analytical optimization: the unknamgctionals that appear in the
expression of the asymptotically optimal bandwidth aressituded by kernel estimates.
The cross-validation methods are based on a numerical izption: the mean squared
prediction errorC'V (h) is estimated through the leayesut estimator and than the opti-
mal bandwidth is chosen numerically as the minimizedf(h). The two approaches
are based on different optimality criteria, so it is diffictd compare them analitically.
Nevertheless, there is concordance in acknowledging dasuifz superiority of plug-in
procedures over cross-validation ones (see, for examplie,, €891, Hallet al., 1991,
Park and Turlach, 1992, Ruppeital., 1995, Loader, 1999).

Let{X;;t =1,...,n} be arealization of length from a real valued stationary stochastic
process{ X;;t € N}. In this paper, we consider the following nonlinear autoesgive
model of order one

Xt =m (thl) + s (thl) Et, (1)

wherem(-) ands(-) are real valued functions defined &) with s(-) > 0. The errors
{&,} arei.i.d. random variables with unknown density functign Model (1) is useful
to analyze financial and econometric time series, which arelly characterized by
nonlinear structures of the functionsands (see, for example, Tjg stheim, 1994). Note
that, forz € R, the functionn(x) represents the conditional mean function of the process,
which may be interpreted as the predicted value based ora#ténormation, while?(z)

is the volatility function, which measures the risk asstadawith this prediction. As a
consequence, both estimations and forecasts of such tigaplay a key role in the area
of asset pricing, portfolio selection and risk management.

Now we present the assumptions needed in the paper. Theyodfe mixing properties
of the process, to the structure of the errgrand of the functionsn ands, and to the
usual requirements concerning the kernel estimator andeteal network estimator.

Al The errors have continuous and positive density funcfioitMoreover, we have
E(2) =1, EBE(s)=EE) =0, and E|g|® < oo, with§ > 4.

A2 The functionm (-) is supposed to have a continuous second order derivatife on
A3 The functions(z) is positive onR, and it has continuous second order derivative.
A4 There exist constants; > 0 andC; > 0 such that, fory € R we have

1/6
m(y)] < G+ ), [s@)] < Col+lyl),  Cr+ Co (Blef) < 1.

A5 The density functiorfx (-) of the stationary distribution exists, is bounded, contin-
uous and strictly positive iiR.



A6 The kernel functiork’ is a density function defined on a compact set, [saly 1].
A7 The bandwidth of the kernél is of orderO(n='/%).
A8 The number of nodeg in the hidden layer of the neural network estimator is such

thatd = d(n) = O (\/W)

A9 The weigth functionu is symmetric, positive and it is such that(u)du = 1 and
[ utw(u)du < oo .

Remark 1 Under the conditions (A1) and (A5), the procgs$ } is geometrically ergodic

and exponentially}-mixing (Ango Nze, 1992; Doukhan, 1994).

The paper is organized as follows. In section 2 we describ&emel based estimator of
the volatility function. In section 3 we explain what is tr@e played by the bandwidth.
In section 4, we present a new plug-in bandwidth selectoedas the use of the neural
networks. Finally, in section 5, we present the results afraukation study which show

the performances of differeptug-in bandwidth estimators.

2. Kernel based estimator s of the volatility function

Various nonparametric estimators of the functiensand s have been proposed in the
literature. This section gives a brief overview on the neapeetric techniques based
on the use of the kernel functions. In the context of estingathe volatility function
of a process, kernel methods have been studied by many authtiie past. For ex-
ample, Masry and Tjgstheim (1995) obtained strong conveeates and asymptotic
normality for kernel estimators of the functioms and s under a-mixing conditions.
Hardle and Tsybakov (1997) treated the problem of estimakiag/olatility function di-
rectly, by using local polynomial regression methods. pedelently, Fan and Yao (1998)
apply the local linear technique to estimate the volatfiityction, using a slightly differ-
ent estimator. Ziegelmann (2002) presents the local exg@iestimator of the volatility
function. Yanget al. (1999) have considered the joint estimation of both adelitnd
multiplicative volatility. Lab (2005) have established the strong uniform consistendy a
asymptotic normality of the kernel estimators of the fumasin ands?, when the process
is stationary and ergodic but it does not satisfy any mixiogdition. Frankeet al. (2004)
analize the bootstrap distribution of the kernel estimafdhe volatility function.

Let K;(-) be akernel function satisfying assumption (A6). Consider the column vectors
u=(1,0,...,007andB = {5, 51, - - - ,ﬁp}T, both of lengthp + 1. The local polynomial
estimator of ordep of a regression functiop(z) = E {g(X;)|X,_1 = =} is equal to
g(z;h) = ul B, derived by solving the following weighted least squaresbfem:

B = argnlgnz {Q(Xt) — Zﬁj(thl — I)J} K<¥> ) (2)
=2 =0

The positive real numbes represents theandwidthof the kernel estimator. For sim-
plicity of notation, we will not indicate explicity the depdence of the bandwidth on the
length of the series, as implied by assumption (A7). The ri2ludes several different
setups by considering different valuespodndg(-). For example, fop = 0 we have the
Nadaraya-Watson estimator, which is usually consideratieaslassic kernel regression
estimator. Fop = 1 we have the local linear estimator and fot 2 the local quadratic



estimator. The local polynomial estimator of orgexvith p > 1, is also useful for deriv-
ing an estimate of the derivatives of the functigi), up to the ordep. By considering
particular functions ofy(-), we obtain estimators of the conditional moments of the pro-
cess, as well as of the conditional distribution of the psscel'he asymptotic properties
of the local polynomial estimator reported in (2) have beetivéd by several researchers.
For mixing processes, see for example Masry and Fan (1997).

The functionsn(-) ands(-) can be regarded as particular regression functions, diege t
represent (combinations of) conditional moments of the@ss. There are substantially
two different approaches for estimating the volatility étion s*>. We will describe sepa-
rately each one. First of all, thanks to the stationarityhefpprocess, the volatility function
v(z) = s*(x) can be decomposed as follows

v(x) = my(z) — m? (),

wheremy(z) = E(X?|X,—1 = z) andm(x) = E(X,|X,_1 = x), so a direct estimator of
the volatility is the following:

?71(%; ha, h2) = 92(33; h2) - {@1(% hl)}2 ) (3

whereg; (z; hy) andgs(x; he) are respectively the kernel based estimators:iar) and
may(x). They are obtained by considering respectivelyz) = 2 and gx(z) = 2% in

(2). The estimatot, (x; hy, he) has been analyzed, for example, in Yao and Tong (1994),
Hardle and Tsybakov (1997), Fan and Yao (1998). We refer, iiticodar, to the results
derived in Hardle and Tsybakov (1997), which derive the asymptotic @ditynof such
estimator. The inconvenience with this estimator is thaai have large bias and it can
produce a negative estimate od the volatility function,eegly if different smoothing
parameters are used in estimatingx) andm,(z). Hardle and Tsybakov proposed an
improved version of the estimator (3), by using a common tadith and a common
kernel function. For this reason, we will refer later on ie fhaper to their estimator and
we will denote it witho, (x; hs).

The alternative estimator of(x) is considered, for example, by Fan and Yao (1998),
Frankeet al.(2004), Kreiss and Neumann (1999), Hall and Carrol (1989Yaegelmann
(2002). We refer in particular to the results reported infitst paper. It is known that

v(a) = E{[X; — m(a)] | X1y = 2}°.

Now consider the estimated squared residaélé;; hy) = {X; — §1(X,_1;h1)}°. The
residual based estimator of the volatility function is ddqoa

Uo(x; b, hg) = Gs(x; ha, hs),

derived by considering the functign(z) = 7(z; k1) in the (2), as follows

n p 2
,é?, = argrréinz {f(Xt; hi) — B3 (X1 — ZL’)]} K3 <Xt+3_x) .4

3 t=2 7=0

Note that we use eventually a different kernel functigp. Fan and Yao (1998) de-
rived the asymptotic normality of the local linear estimatg(x; h, h3), obtained by
fixing p = 1 in the (4). One would expect some loss in convergence fordsiisna-
tor, since the local regression in (4) is based on a previeusek estimatior’(X;; hy).
This would require generally the necessity of undersmagttihe nonparametric link



estimated function in order to achieve a faster rate of stascy (see, for example,
Kreiss and Neumann, 1999). In contrast, the estimator; iy, h3) iS regression adap-
tive, in the sense that the volatility function can be estedaasymptotically as well as
if the conditional mean functiom(z) were known (Hall and Carrol, 1989, Fan and Yao,
1998).

3. Theroleplayed by the bandwidths

In the implementation of local polynomial regression estions two parameters must be
selected: the order of the local polynomial fit and the badthwvof the kernel function.
These parameters play a crucial role in the performancesaggtimators, since they both
influence the mean square error of the estimators. It is vfigudt to select the optimal
estimator by tuning simultaneously both these parametdosvever, a good quality of
approximation can be reached by choosing an appropriatbidiin when using a fixed
order of fit. In this paper we focus on the problem of selectirgoptimal bandwidth for
the local linear estimator (when the order of the polynomiisl fixed to 1).

Let us consider first the estimator(x; hy) of Hardle and Tsybakov (1997). The mean
squared error is asymptotically equal to

MSE {y(z:h2)} = E{in(x; h2) — v(z))’ (5)

g [ o A ) 2 e

Here\, = E{(¢} — 1)?}, fx(z) is the density function of{; and o}, represents the
squared variance of the kernel function. The first term inlés¢ expression of the (5)
represents the variance, while the second term is the sjbéae of the estimator. By
evaluating the expressionin (5), it can be seen what is tegtayed by the bandwidth,:

it involves a trade-off between bias and variance, sincéadively large bandwidth brings
to a reduction in the variance of the nonparametric estimatbereas the bias of the
estimator increases. Miminization of the (5) with respedt4 leads to the asymptotical
optimal value of the local bandwidth

opt Crv*(2) )\ 15 —1/5
hy(x) = 5 n-/7.
(@) (fx<x> (o) + 2{m' ()} )

The constanCy = o5 [ K*(u)du is known, because it depends only on the kernel
function. Note that the (6) represents a local optimal badthysince it depends on the
value ofz. As expected, the local variability of the process and ofkémnel function
have a direct effect on the size of the bandwidth, while tloallaensity of the process
and the local smoothness of the functiodetermine an inverse effect on it. Therefore, a
constant global bandwidtt®-°P* can be sufficient if the unknown volatility function has a
high smoothness. This global bandwidth can be selected bynizing a global measure
of the estimation error, for example the asymptotical Medadrated Squared Error

(6)

MISE(tn; hy) = / MSE {61(x; ho)}y w(z) fx (2)da. 7)

For the sake of generality, we introduce the weigth functidn) in the construction
of the MISE. This will enable us to generalize our neural reelwbandwidth selector



to different context, such as the estimation of a variabledbadth. The asymptotically
optimal global bandwidth is the bandwidth which minimizke {7)

.opt . ” CK)\4R('U) 1/ _
h§P = argrrilllanISE(vl, hy) = (Rf[v” oY n 5. (8)

We introduce the operato8(-) and R-) to denote, respectively, the squared integral
with respect to the Lesbeague measure and with respect togasureF ' (-).
The functionalsk(v) and R [v” + 2(m’)?] are then equal to

R(v) = /UQ(ZL’)M(ZL‘)dl’ 9)
Rf[v”+2(m')2} = /{v”(:v)+2[m’(m)]2}2w(x)fx(x)dx (10)

If we consider the estimatak(x; hy, h3) of Fan and Yao (1998), the expression of the
approximated mean squared error modifies in the following wa

414
ochs
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Note thath, is the bandwidth used in the estimation of the functio(), in order to
get the residual8(Xy; hy). This bandwidth does not affect the leading part of Mif8E
as shown in Fan and Yao (1998). This simplifies the selectionquure of the smooth-
ing parameteh, as it can be choosed independently from Nevertheless, it remains
the fact that the use of the estimatefz; hy, h3) implies the necessity of selecting two
different bandwidths. By following the same arguments a®igefwe obtain the two
asymptotical formulas for the bandwidths andhs

1/5
Wy = argmin MISE(i; hy) = (%ﬁfﬁ;) n~?, (11)
. 1/5
hEPt = argn}l:i;nMISE(@;hg) = (%) n~1s. (12)
Here the functional®(s), R{m") andR{v") are defined as
R(s) = [ Sapuys, ") = [ @) wo)fx(e)da, a3)
R = [ (0@ w(e) (o). a4)

In conclusion, itis evident what is the importance of theeorselection of the smoothing
parameter in kernel regression. All the optimal bandwid®)s(11) and (12) are of order
O(n~1/°) = Cn~'/°, as stated in assumption (A7). However, the constantay assume
very different values in the three cases and such valuesemyedifficult to guess at a
glance. An automatic data-driven bandwidth selection@iace should be then useful.



4. The plug-in method and the neural network bandwidth selector

The plug-in method for the selection of the optimal bandtistiarts with the analitical
derivation of the asymptotical optimal bandwidth, thatis talue of the bandwidth which
minimizes the integrated mean squared error of the estimé&ior the example of the
conditional variance, such value is represented by theesspon (8) for the estimatar
and by the expression (12) for the estimaiarThe basic idea of the plug-in approach is
to substitute the unknown functionals which appear in thression of the asymptotical
optimal bandwidth with some consistent estimates. As fesamse derivative functions
are involved, local polynomial estimators are usually (@peonsidered for the estimation
of such quantities. Therefore, plug-in methods are gelyaraplemented as multi-step
procedures: in the preliminary stage, some pilot bandwidtiust be selected for the
auxiliary estimations of the unknown functionals in the 48l (12) (one pilot bandwidth
for each unknown function to estimate!); such estimatedtse used in the final step
(plug-in) to get the estimation of the optimal bandwidth.

The main criticism directed at plug-in methods is that theyteeavily dependent on the
correct specification of the pilot bandwidths in the firsggtabeing heavely biased when
this specification is wrong (Loader, 1999, Giordano andd®arr2006b). Things run bet-
ter if one starts with some consistent estimation of theitogal’ pilot bandwidths, but this
would require the implementation of a specific “pilot” bandth selector, which usually
requires the estimation of higher order derivatives of thenown functions. Thus, the
situation seems like that of a dog which tries to bite its tail

In Giordano and Parrella (2006a)(2006b), we proposed a hayvip method for the se-
lection of the optimal bandwidth based on the use of the NéNgawork technique. We
showed the consistency of the selection method for the astmof the global optimal
bandwidth for nonparametric homoscedastic autoregressndels. Here we adapt the
procedure to the nonparametric estimation of nonlinearbstedastic models.

The main advantage of our method lies in the fact that it do¢sl@pend on the selection
of a preliminary pilot bandwidth, contrary to what happerithwhe traditional plug-in
methods. The only tuning parameter to identify is the nunolbeodes in the hidden layer
of the neural network function, but this can be easily domanks to the several automatic
procedures available for this purpose. We refer to the pap&iordano and Parrella
(2006Db) for a detailed description of the method, togeth#r thie theoretical justification
and the computational performance of it, compared withridgitional plug-in approach.
We describe first the neural network estimator. A Feedfoividgural Network, with one
lagged variable and one hidden layer, is defined by the fomcti

d

9(Xio;m) = Y cnd (i, Xo1 +bix) + cio, i=12, (15)
k=1
wheren, = (¢, i1, - - -, Cia, Qi1 - - -, @ig, bi1 - . . big) 1S the vector of parameters to esti-

mate, andi is the number of nodes of the hidden layer, satisfying assompA8). The
quantities;o andb;; . . . b;; are called bias terms, white(+) is a sigmoidal activation func-
tion, i.e. a bounded measurable function Brwith ¢(u) — 1 asu — oo and¢(u) — 0
asu — —oo, and¢ € C*°(R). The Neural Network estimator of a regression function
9i(Xi-1) = E{g:(X;)| X;-1} is equal tog(X;_1; 79;), given by solving

1; = arg H};“Z [9:(X2) — q(Xi-1; "71')]2a i=1,2, (16)

tot=2



whereg; (z) = z andgy(z) = 22, as before. Neural Network estimators have good ap-
proximation capabilities (Hornik, 1991). In this paper, @ansider the logistic activation
function ¢(z) = [1 + exp(—z)]~*. Moreover, we assume that the neural network esti-
mator has the properties of tapproximate sieve extremustimator of Chen and White
(1999).

The plug-in neural network bandwidth selector is based em#ural network estimation
of the unknown functionals which appear in the formula of #sgmptotically optimal
bandwidth. Note that we can reformulate the (10) and theifil#je following way

Ry [o"+%m')?] = / (m(z) — 2m(z)m" (2)} w(z) fx (2)da
Ryu"] = / [ml(z) — 20m!(2)]? — 2m(a)m"(2) o (z) fx (2)d.

Now using these last expressions, we propose the followaogah network estimators of
the functionalsk,[v"+2m/)?] and R [v"].

n*

- 1

N ~ 2 ~

R(v) = o Z [Q(fﬂﬁ my) — q2($t§771)} w(zy; 7), 17)

t=1
R 1 n
" AV " LA

R[v" +2(m)7] = n—lg{q (Xi137M9) + (18)

—2(1(th1§ 771) ql/(Xt—l; 771)}2 w(Xt—1§ 72)~
Here{z,z,, ..., z,} is a uniformly spaced values on a subseRofvith n* << n. The

notationg”(X,_1; 7j,) denotes the second derivative of the func{ox;_;; 7, ), obtained
by deriving the expression (15) in corrispondencejpf The weight functionu(z; 7) is
taken as the density of the normal distribution with meao z&d variancé? equal to the
estimated variance of;. Substituting the estimations (17) and (18) in the (8), weage
estimation of the optimal bandwidth for the volatility esttor of Hardle and Tsybakov.
As concerning the bandwidtlts andhs, we propose to use

R(S) = % Z [C](fﬁt; M) — 92(955771)} w(x;T), (19)
Rfm’) = =31 (X (X1 7), 20)
Rty = o S {0 (X — 2 (K 4

~2q(Xe-1371) ¢ (Xe1; )} w0(Xem15 1), (21)

Note that the expressions from (17) to (21) are based onlyvomeural network esti-
mations,i.e. ¢(X;_1;7,) andq(X,_1;7,). The derivatives which appear in the previous
formulas are obtained directly by deriving appropriatéky €xpression (15). On the other
hand, a specific estimation for each derivative is generalijyired in the traditional ap-
proach.



Theorem: If the conditions (A1)-(A5) and (A8) hold, then
[ 0te) = a s )P ) 20
R

/R [s*(x) +m*(z) — ¢ (1’;772)}2 fx(z)dz =0

Proof
Given the assumptions (Al)-(A5) and (A8), the result fokoapplying the Lemma 2 in
Giordano and Parrella (2006b).

5. The computational performance of the bandwidth selectors

We made some simulations in order to test our bandwidth seteprocedure and to
compare it computationally with the traditional plug-innolavidth selector based on the
use of the local polynomial derivative estimation. In thegton we present the results.
We consider the following two models:

X: = (0.3+0.3]X-1]) & (22)
0.7

X, = T o~ X) +{A( X1+ 1.2) + 1.5¢( X1 — 1.2) } &4 (23)
The errorse; arei.i.d. and normally distributed, with zero mean and unit variance.
It can be easily shown that both the models are geometrieatjpdic and exponen-
tially #-mixing, since they satisfy the assumptions (A1)-(A5). &diat the first model
has only one point for which the first derivative does not iexasd this does not have
any effect on the estimation. Model (23) is similar to thahsidered in the paper of
Hardle and Tsybakov (1997).
We considered two different time series lengths= (500, 1000). For each model, we
generated 200 replications for a given time series lengtle. cdhsider the problem of
the bandwidth selection in the local linear estimation @& tolatility function by using
both the estimators described in section 2. Thus we havditoas the five functionals
reported in (9), (10), (13) and (14). We use two plug-in mdthothe neural network
plug-in approach described in section 4 and the traditiphag-in approach, based on the
local polynomial estimation of the previous functionalsall the simulations, we use the
Epanechnikov kernel, which is defined E$u) = 0.75(1 — u?), for |u| < 1.
As a first step, we simulated the true values of the unknowwtfomals which appear
in the asymptotical formulas of the bandwidths by Monte Caitoulations, considering
5000 realizations of lenght = 1000 for each model. These values can be used to derive
the “true” optimal bandwidths. The results are reportedhatable below
Figure 1 and 2 report the boxplots of the estimated functsoftat models (22) and (23),
using the neural network and the local polynomial approscha particular, the last
procedure has been used with a pilot bandwidth near to thenapvalue. The panel
on the left considers time series of length= 500, while the other panel reports the
estimates fom = 1000. The first two boxplots of each panel refer to the estimates of
the functional in (10) obtained respectively by our procdeduNN) and by the traditional
Local Polynomial estimator (.ker). The third and fourth plmts concern the estimation
of the functional in (9), while the last two refer to the fuioctal R (m”) in the (13). The




Table 1: The true values for the functionals (9), (10), (13) and (tiéyived by
Monte Carlo simulations, for the two models (22) and (23).

R(s) | R(v) | R{v") | R(m") | Ry[v" +2(m)’]
Model (22) | 0.1064| 0.0124] 0.0231 0 0.0231
Model (23)| 0.1617] 0.0392| 0.0839| 0.0005 0.0646
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Figure 1. Boxplots of the estimated functionals for model (22). Theepan the
left considers time series of length= 500, while the other panel reports the
estimates fon = 1000. The first two boxplots of each panel refer to the
estimates of the functional in the (10) obtained respelstivg our procedure
(.NN) and by the traditional Local Polynomial estimator (keFhe third and
fourth boxplots concern the estimation of the functionahim (9), while the last
two refer to the functionak ;(m”) in the (13).

dashed line refers to the true value of the functiaRa(v”), while the dotted line refers
to the true value of the functiond,(v” + 2(m’)?) (note that for model (22) we have that
Ry(v") = Ry(v" +2(m')?)).

It is evident from the box-plots that both the procedurescamsistent, but the neural
networks seem to outperform the local polynomial estingatbor the sake of brevity, we
do not report the results relative to the other functiord#ls) and R(s).

We should stress the fact that the implementation of ourg@ore is relatively simple,
because we do not have to guess any value for the tuning pamadn@umber of nodes
of the hiden layer). We just used in our simulations a BIC s&lacalgoritmh which
automatically selects the optimal valuedf
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