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Riassunto: La volatilità dei rendimentìe considerata una misura di rischio nei mercati
finanziari. Sono stati proposti in letteratura diversi e sofisticati modelli parametrici per
l’analisi della volatilit̀a, in grado di cogliere i principali e più importanti aspetti strutturali
dei mercati finanziari. Come noto, questi modelli sono soggetti al rischio della errata spe-
cificazione. I metodi nonparametrici di tipo kernel, d’altra parte, svincolano lo stimatore
della volatilit̀a dalle specifiche ipotesi del modello, e sono utili sia ai finidi stima, sia ai
fini della scelta e della verifica del modello parametrico. Incambio, la difficolt̀a tecnica di
questi stimatorìe rappresentata dalla selezione del parametro di smoothing, che determina
in modo cruciale la consistenza dei risultati. In questo lavoro noi descriviamo gli aspetti
pratici di tale questione, e confrontiamo il classico metodo plug-in proposto in letteratu-
ra per la scelta automatica del parametro di smoothing con unnuovo approccio basato
sull’uso delle reti neurali. Presentiamo, infine, i risultati di uno studio di simulazione.
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1. Introduction

Since the ARCH model of Engle (1982), many sophisticated parametric volatility mod-
els have been proposed in the literature, which are able to capture the salient features
of the underlying economic structures. See, for example, the TARCH model of Zaköıan
(1994), the QTARCH model of Gouriéroux and Monfort (1992), the GARCH model of
Bollerslev (1986), and so on. Nevertheless, there is always adanger that misspecification
of a model leads to erroneous valuation and forecasts. On theother hand, nonparametric
estimators of the volatility functions are not subject to the constraints related to the spe-
cific models assumed, and they adapt naturally even to highlynonlinear structures of the
underlying unknown functions. The utility of nonparametric estimators is twofold: first of
all, they give consistent estimations of the volatility functions (see Ḧardle and Tsybakov,
1997; Fan and Yao, 1998; Franke and Diagne, 2006); secondly,they can be used for
finding simple and appropriate parametric models or even fortesting them rigorously
(Kreiss and Neumann, 1999; Fan and Huang, 2001; Chenet al., 2003).
In particular, kernel based regression estimators have good properties, provided that they
are correctly implemented (Masry and Fan, 1997, Masry and Tjøstheim, 1995). The most
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appealing are the local polynomial estimators, which include the Nadaraya-Watson esti-
mator as a particular case. The main difficulty with these kind of estimators is represented
by the selection of the smoothing parameter, thebandwidthof thekernel function, which
sensibly affects the consistency of the results.
In this paper, we study the problem of the selection of the optimal bandwidth in kernel
based estimation of the volatility function. There are several approaches for the estima-
tion of the optimal value of the bandwidth. The methods proposed so far in the literature
may be divided into two broad categories:cross-validationmethods andplug-inmethods
(for a dependent data context, see for example Härdle and Vieu, 1992, Hallet al., 1995,
Hart, 1996, Kim and Cox, 1997, Sköld, 2000, Masry and Fan, 1997). The plug-in ap-
proach is based on an analytical optimization: the unknown functionals that appear in the
expression of the asymptotically optimal bandwidth are substituted by kernel estimates.
The cross-validation methods are based on a numerical optimization: the mean squared
prediction errorCV (h) is estimated through the leave-p-out estimator and than the opti-
mal bandwidth is chosen numerically as the minimizer ofCV (h). The two approaches
are based on different optimality criteria, so it is difficult to compare them analitically.
Nevertheless, there is concordance in acknowledging a substantial superiority of plug-in
procedures over cross-validation ones (see, for example, Chiu, 1991, Hallet al., 1991,
Park and Turlach, 1992, Ruppertet al., 1995, Loader, 1999).
Let {Xt; t = 1, . . . , n} be a realization of lengthn from a real valued stationary stochastic
process,{Xt; t ∈ N}. In this paper, we consider the following nonlinear autoregressive
model of order one

Xt = m (Xt−1) + s (Xt−1) εt, (1)

wherem(·) ands(·) are real valued functions defined onR, with s(·) > 0. The errors
{εt} are i.i.d. random variables with unknown density functionfε. Model (1) is useful
to analyze financial and econometric time series, which are generally characterized by
nonlinear structures of the functionsm ands (see, for example, Tjø stheim, 1994). Note
that, forx ∈ R, the functionm(x) represents the conditional mean function of the process,
which may be interpreted as the predicted value based on the past information, whiles2(x)
is the volatility function, which measures the risk associated with this prediction. As a
consequence, both estimations and forecasts of such quantities play a key role in the area
of asset pricing, portfolio selection and risk management.
Now we present the assumptions needed in the paper. They refer to the mixing properties
of the process, to the structure of the errorsεt and of the functionsm ands, and to the
usual requirements concerning the kernel estimator and theneural network estimator.

A1 The errors have continuous and positive density functionfε. Moreover, we have

E(ε2
t ) = 1, E(εt) = E(ε3

t ) = 0, and E|εt|
δ < ∞, with δ > 4.

A2 The functionm (·) is supposed to have a continuous second order derivative onR.
A3 The functions(x) is positive onR, and it has continuous second order derivative.
A4 There exist constantsC1 > 0 andC2 > 0 such that, fory ∈ R we have

|m(y)| ≤ C1(1 + |y|), |s(y)| ≤ C2(1 + |y|), C1 + C2

(

E|εt|
δ
)1/δ

< 1.

A5 The density functionfX(·) of the stationary distribution exists, is bounded, contin-
uous and strictly positive inR.



A6 The kernel functionK is a density function defined on a compact set, say[−1, 1].
A7 The bandwidth of the kernelh is of orderO(n−1/5).
A8 The number of nodesd in the hidden layer of the neural network estimator is such

thatd = d(n) = O
(

√

n/ log n
)

.

A9 The weigth functionw is symmetric, positive and it is such that
∫

w(u)du = 1 and
∫

u4w(u)du < ∞ .

Remark 1: Under the conditions (A1) and (A5), the process{Xt} is geometrically ergodic
and exponentiallyβ-mixing (Ango Nze, 1992; Doukhan, 1994).
The paper is organized as follows. In section 2 we describe the kernel based estimator of
the volatility function. In section 3 we explain what is the role played by the bandwidth.
In section 4, we present a new plug-in bandwidth selector based on the use of the neural
networks. Finally, in section 5, we present the results of a simulation study which show
the performances of differentplug-inbandwidth estimators.

2. Kernel based estimators of the volatility function

Various nonparametric estimators of the functionsm ands have been proposed in the
literature. This section gives a brief overview on the nonparametric techniques based
on the use of the kernel functions. In the context of estimating the volatility function
of a process, kernel methods have been studied by many authors in the past. For ex-
ample, Masry and Tjøstheim (1995) obtained strong convergence rates and asymptotic
normality for kernel estimators of the functionsm and s underα-mixing conditions.
Härdle and Tsybakov (1997) treated the problem of estimatingthe volatility function di-
rectly, by using local polynomial regression methods. Independently, Fan and Yao (1998)
apply the local linear technique to estimate the volatilityfunction, using a slightly differ-
ent estimator. Ziegelmann (2002) presents the local exponential estimator of the volatility
function. Yanget al. (1999) have considered the joint estimation of both additive and
multiplicative volatility. Läıb (2005) have established the strong uniform consistency and
asymptotic normality of the kernel estimators of the functionsm ands2, when the process
is stationary and ergodic but it does not satisfy any mixing condition. Frankeet al.(2004)
analize the bootstrap distribution of the kernel estimatorof the volatility function.
Let Ki(·) be akernel function, satisfying assumption (A6). Consider the column vectors
u = (1, 0, . . . , 0)T andβ = {β0, β1, . . . , βp}

T , both of lengthp+1. The local polynomial
estimator of orderp of a regression functiong(x) = E {g(Xt)|Xt−1 = x} is equal to
ĝ(x; h) = uT β̂, derived by solving the following weighted least squares problem:

β̂ = arg min
β

n
∑

t=2

{

g(Xt) −

p
∑

j=0

βj(Xt−1 − x)j

}2

K

(

Xt−1 − x

h

)

. (2)

The positive real numberh represents thebandwidthof the kernel estimator. For sim-
plicity of notation, we will not indicate explicity the dependence of the bandwidth on the
length of the series, as implied by assumption (A7). The (2) includes several different
setups by considering different values ofp andg(·). For example, forp = 0 we have the
Nadaraya-Watson estimator, which is usually considered asthe classic kernel regression
estimator. Forp = 1 we have the local linear estimator and forp = 2 the local quadratic



estimator. The local polynomial estimator of orderp, with p ≥ 1, is also useful for deriv-
ing an estimate of the derivatives of the functiong(x), up to the orderp. By considering
particular functions ofg(·), we obtain estimators of the conditional moments of the pro-
cess, as well as of the conditional distribution of the process. The asymptotic properties
of the local polynomial estimator reported in (2) have been derived by several researchers.
For mixing processes, see for example Masry and Fan (1997).
The functionsm(·) ands(·) can be regarded as particular regression functions, since they
represent (combinations of) conditional moments of the process. There are substantially
two different approaches for estimating the volatility function s2. We will describe sepa-
rately each one. First of all, thanks to the stationarity of the process, the volatility function
v(x) = s2(x) can be decomposed as follows

v(x) = m2(x) − m2(x),

wherem2(x) = E(X2
t |Xt−1 = x) andm(x) = E(Xt|Xt−1 = x), so a direct estimator of

the volatility is the following:

v̂1(x; h1, h2) = ĝ2(x; h2) − {ĝ1(x; h1)}
2 , (3)

whereĝ1(x; h1) and ĝ2(x; h2) are respectively the kernel based estimators form(x) and
m2(x). They are obtained by considering respectivelyg1(z) = z and g2(z) = z2 in
(2). The estimator̂v1(x; h1, h2) has been analyzed, for example, in Yao and Tong (1994),
Härdle and Tsybakov (1997), Fan and Yao (1998). We refer, in particular, to the results
derived in Ḧardle and Tsybakov (1997), which derive the asymptotic normality of such
estimator. The inconvenience with this estimator is that itcan have large bias and it can
produce a negative estimate od the volatility function, especially if different smoothing
parameters are used in estimatingm(x) andm2(x). Härdle and Tsybakov proposed an
improved version of the estimator (3), by using a common bandwidth and a common
kernel function. For this reason, we will refer later on in the paper to their estimator and
we will denote it withv̂1(x; h2).
The alternative estimator ofv(x) is considered, for example, by Fan and Yao (1998),
Frankeet al.(2004), Kreiss and Neumann (1999), Hall and Carrol (1989) andZiegelmann
(2002). We refer in particular to the results reported in thefirst paper. It is known that

v(x) = E {[Xt − m(x)] |Xt−1 = x}2 .

Now consider the estimated squared residualsr̂(Xt; h1) = {Xt − ĝ1(Xt−1; h1)}
2. The

residual based estimator of the volatility function is equal to

v̂2(x; h1, h3) = ĝ3(x; h1, h3),

derived by considering the functiong3(z) = r̂(z; h1) in the (2), as follows

β̂3 = arg min
β

3

n
∑

t=2

{

r̂(Xt; h1) −

p
∑

j=0

β3j(Xt−1 − x)j

}2

K3

(

Xt−1 − x

h3

)

. (4)

Note that we use eventually a different kernel functionK3. Fan and Yao (1998) de-
rived the asymptotic normality of the local linear estimator v̂2(x; h1, h3), obtained by
fixing p = 1 in the (4). One would expect some loss in convergence for thisestima-
tor, since the local regression in (4) is based on a previous kernel estimation̂r(Xt; h1).
This would require generally the necessity of undersmoothing the nonparametric link



estimated function in order to achieve a faster rate of consistency (see, for example,
Kreiss and Neumann, 1999). In contrast, the estimatorv̂2(x; h1, h3) is regression adap-
tive, in the sense that the volatility function can be estimated asymptotically as well as
if the conditional mean functionm(x) were known (Hall and Carrol, 1989, Fan and Yao,
1998).

3. The role played by the bandwidths

In the implementation of local polynomial regression estimators two parameters must be
selected: the order of the local polynomial fit and the bandwidth of the kernel function.
These parameters play a crucial role in the performance of the estimators, since they both
influence the mean square error of the estimators. It is very difficult to select the optimal
estimator by tuning simultaneously both these parameters.However, a good quality of
approximation can be reached by choosing an appropriate bandwidth when using a fixed
order of fit. In this paper we focus on the problem of selectingthe optimal bandwidth for
the local linear estimator (when the order of the polynomialp is fixed to 1).
Let us consider first the estimatorv̂1(x; h2) of Härdle and Tsybakov (1997). The mean
squared error is asymptotically equal to

M̃SE {v̂1(x; h2)} = E {v̂1(x; h2) − v(x)}2 (5)

=
v2(x)λ4

nh2fX(x)

∫

K2(u)du +
σ4

Kh4
2

4

[

v′′(x) + 2 {m′(x)}
2
]2

.

Hereλ4 = E {(ε2
1 − 1)2}, fX(x) is the density function ofXt andσ4

K represents the
squared variance of the kernel function. The first term in thelast expression of the (5)
represents the variance, while the second term is the squared bias of the estimator. By
evaluating the expression in (5), it can be seen what is the role played by the bandwidthh2:
it involves a trade-off between bias and variance, since a relatively large bandwidth brings
to a reduction in the variance of the nonparametric estimator, whereas the bias of the
estimator increases. Miminization of the (5) with respect to h2 leads to the asymptotical
optimal value of the local bandwidth

hopt
2 (x) =

(

CKv2(x)λ4

fX(x) [v′′(x) + 2{m′(x)}2]2

)1/5

n−1/5. (6)

The constantCK = σ−4
K

∫

K2(u)du is known, because it depends only on the kernel
function. Note that the (6) represents a local optimal bandwidth, since it depends on the
value ofx. As expected, the local variability of the process and of thekernel function
have a direct effect on the size of the bandwidth, while the local density of the process
and the local smoothness of the functionv determine an inverse effect on it. Therefore, a
constant global bandwidthhg.opt can be sufficient if the unknown volatility function has a
high smoothness. This global bandwidth can be selected by minimizing a global measure
of the estimation error, for example the asymptotical Mean Integrated Squared Error

MISE(v̂1; h2) =

∫

M̃SE {v̂1(x; h2)}w(x)fX(x)dx. (7)

For the sake of generality, we introduce the weigth functionw(x) in the construction
of the MISE. This will enable us to generalize our neural network bandwidth selector



to different context, such as the estimation of a variable bandwidth. The asymptotically
optimal global bandwidth is the bandwidth which minimizes the (7)

hg.opt
2 = arg min

h2

MISE(v̂1; h2) =

(

CKλ4R(v)

Rf [v′′ + 2(m′)2]

)1/5

n−1/5. (8)

We introduce the operatorsR(·) andRf(·) to denote, respectively, the squared integral
with respect to the Lesbeague measure and with respect to themeasureFX(·).
The functionalsR(v) andRf [v

′′ + 2(m′)2] are then equal to

R(v) =

∫

v2(x)w(x)dx (9)

Rf

[

v′′ + 2(m′)2
]

=

∫

{

v′′(x) + 2[m′(x)]2
}2

w(x)fX(x)dx (10)

If we consider the estimator̂v2(x; h1, h3) of Fan and Yao (1998), the expression of the
approximated mean squared error modifies in the following way

M̃SE{v̂2(x; h1, h3)} =
v2(x)λ4

nh3fX(x)

∫

K2(u)du +
σ4

Kh4
3

4
[v′′(x)]

2
.

Note thath1 is the bandwidth used in the estimation of the functionm(x), in order to
get the residualŝr(Xt; h1). This bandwidth does not affect the leading part of theMSE,
as shown in Fan and Yao (1998). This simplifies the selection procedure of the smooth-
ing parameterh3, as it can be choosed independently fromh1. Nevertheless, it remains
the fact that the use of the estimatorv̂2(x; h1, h3) implies the necessity of selecting two
different bandwidths. By following the same arguments as before, we obtain the two
asymptotical formulas for the bandwidthsh1 andh3

hg.opt
1 = arg min

h1

MISE(m̂; h1) =

(

CKR(s)

Rf(m′′)

)1/5

n−1/5, (11)

hg.opt
3 = arg min

h3

MISE(v̂2; h3) =

(

CKλ4R(v)

Rf(v′′)

)1/5

n−1/5. (12)

Here the functionalsR(s), Rf(m
′′) andRf(v

′′) are defined as

R(s) =

∫

s2(x)w(x)dx, Rf(m
′′) =

∫

[m′′(x)]
2
w(x)fX(x)dx, (13)

Rf(v
′′) =

∫

[v′′(x)]
2
w(x)fX(x)dx. (14)

In conclusion, it is evident what is the importance of the correct selection of the smoothing
parameter in kernel regression. All the optimal bandwidths(8), (11) and (12) are of order
O(n−1/5) = Cn−1/5, as stated in assumption (A7). However, the constantC may assume
very different values in the three cases and such values are very difficult to guess at a
glance. An automatic data-driven bandwidth selection procedure should be then useful.



4. The plug-in method and the neural network bandwidth selector

The plug-in method for the selection of the optimal bandwidth starts with the analitical
derivation of the asymptotical optimal bandwidth, that is the value of the bandwidth which
minimizes the integrated mean squared error of the estimator. For the example of the
conditional variance, such value is represented by the expression (8) for the estimator̂v1

and by the expression (12) for the estimatorv̂2. The basic idea of the plug-in approach is
to substitute the unknown functionals which appear in the expression of the asymptotical
optimal bandwidth with some consistent estimates. As far assome derivative functions
are involved, local polynomial estimators are usually (again) considered for the estimation
of such quantities. Therefore, plug-in methods are generally implemented as multi-step
procedures: in the preliminary stage, some pilot bandwidths must be selected for the
auxiliary estimations of the unknown functionals in the (8)and (12) (one pilot bandwidth
for each unknown function to estimate!); such estimates arethen used in the final step
(plug-in) to get the estimation of the optimal bandwidth.
The main criticism directed at plug-in methods is that they are heavily dependent on the
correct specification of the pilot bandwidths in the first stage, being heavely biased when
this specification is wrong (Loader, 1999, Giordano and Parrella, 2006b). Things run bet-
ter if one starts with some consistent estimation of the “optimal” pilot bandwidths, but this
would require the implementation of a specific “pilot” bandwidth selector, which usually
requires the estimation of higher order derivatives of the unknown functions. Thus, the
situation seems like that of a dog which tries to bite its tail.
In Giordano and Parrella (2006a)(2006b), we proposed a new plug-in method for the se-
lection of the optimal bandwidth based on the use of the Neural Network technique. We
showed the consistency of the selection method for the estimation of the global optimal
bandwidth for nonparametric homoscedastic autoregressive models. Here we adapt the
procedure to the nonparametric estimation of nonlinear heteroscedastic models.
The main advantage of our method lies in the fact that it does not depend on the selection
of a preliminary pilot bandwidth, contrary to what happens with the traditional plug-in
methods. The only tuning parameter to identify is the numberof nodes in the hidden layer
of the neural network function, but this can be easily done, thanks to the several automatic
procedures available for this purpose. We refer to the paperof Giordano and Parrella
(2006b) for a detailed description of the method, together with the theoretical justification
and the computational performance of it, compared with the traditional plug-in approach.
We describe first the neural network estimator. A Feedforward Neural Network, with one
lagged variable and one hidden layer, is defined by the function

q(Xt−1; ηi) =
d

∑

k=1

cikφ (aik, Xt−1 + bik) + ci0, i = 1, 2, (15)

whereηi = (ci0, ci1, . . . , cid, ai1, . . . , aid, bi1 . . . bid) is the vector of parameters to esti-
mate, andd is the number of nodes of the hidden layer, satisfying assumption (A8). The
quantitiesci0 andbi1 . . . bid are called bias terms, whileφ (·) is a sigmoidal activation func-
tion, i.e. a bounded measurable function onR with φ(u) → 1 asu → ∞ andφ(u) → 0
asu → −∞, andφ ∈ C∞(R). The Neural Network estimator of a regression function
gi(Xt−1) = E {gi(Xt)|Xt−1} is equal toq(Xt−1; η̂i), given by solving

η̂i = arg min
η

i

n
∑

t=2

[gi(Xt) − q(Xt−1; ηi)]
2 , i = 1, 2, (16)



whereg1(z) = z andg2(z) = z2, as before. Neural Network estimators have good ap-
proximation capabilities (Hornik, 1991). In this paper, weconsider the logistic activation
function φ(z) = [1 + exp(−z)]−1. Moreover, we assume that the neural network esti-
mator has the properties of theapproximate sieve extremumestimator of Chen and White
(1999).
The plug-in neural network bandwidth selector is based on the neural network estimation
of the unknown functionals which appear in the formula of theasymptotically optimal
bandwidth. Note that we can reformulate the (10) and the (14)in the following way

Rf

[

v′′+2(m′)2
]

=

∫

{m′′
2(x) − 2m(x)m′′(x)}

2
w(x)fX(x)dx

Rf [v
′′] =

∫

{

m′′
2(x) − 2[m′(x)]2 − 2m(x)m′′(x)

}2
w(x)fX(x)dx.

Now using these last expressions, we propose the following neural network estimators of
the functionalsRf [v

′′+2(m′)2] andRf [v
′′].

R̂(v) =
1

n∗

n∗

∑

t=1

[

q(xt; η̂2) − q2(xt; η̂1)
]2

w(xt; τ̂), (17)

R̂f [v
′′ + 2(m′)2] =

1

n − 1

n
∑

t=2

{q′′(Xt−1; η̂2) + (18)

−2q(Xt−1; η̂1) q′′(Xt−1; η̂1)}
2
w(Xt−1; τ̂).

Here{x1, x2, . . . , xn∗} is a uniformly spaced values on a subset ofR, with n∗ << n. The
notationq′′(Xt−1; η̂1) denotes the second derivative of the functionq(Xt−1; η̂1), obtained
by deriving the expression (15) in corrispondence ofη̂1. The weight functionw(x; τ̂) is
taken as the density of the normal distribution with mean zero and variancêτ 2 equal to the
estimated variance ofXt. Substituting the estimations (17) and (18) in the (8), we get an
estimation of the optimal bandwidth for the volatility estimator of Ḧardle and Tsybakov.
As concerning the bandwidthsh1 andh3, we propose to use

R̂(s) =
1

n∗

n∗

∑

t=1

[

q(xt; η̂2) − q2(xt; η̂1)
]

w(xt; τ̂), (19)

R̂f(m
′′) =

1

n − 1

n
∑

t=2

[q′′(Xt−1; η̂1)]
2
w(Xt−1; τ̂), (20)

R̂f (v
′′) =

1

n − 1

n
∑

t=2

{

q′′(Xt−1; η̂2) − 2 [q′(Xt−1; η̂1)]
2
+ .

−2q(Xt−1; η̂1) q′′(Xt−1; η̂1)}
2
w(Xt−1; τ̂), (21)

Note that the expressions from (17) to (21) are based only on two neural network esti-
mations,i.e. q(Xt−1; η̂1) andq(Xt−1; η̂2). The derivatives which appear in the previous
formulas are obtained directly by deriving appropriately the expression (15). On the other
hand, a specific estimation for each derivative is generallyrequired in the traditional ap-
proach.



Theorem: If the conditions (A1)-(A5) and (A8) hold, then
∫

R

[m(x) − q (x; η̂1)]
2 fX(x)dx

p
−→ 0

∫

R

[

s2(x) + m2(x) − q (x; η̂2)
]2

fX(x)dx
p

−→ 0

Proof
Given the assumptions (A1)-(A5) and (A8), the result follows applying the Lemma 2 in
Giordano and Parrella (2006b).

5. The computational performance of the bandwidth selectors

We made some simulations in order to test our bandwidth selection procedure and to
compare it computationally with the traditional plug-in bandwidth selector based on the
use of the local polynomial derivative estimation. In this section we present the results.
We consider the following two models:

Xt = (0.3 + 0.3|Xt−1|) εt (22)

Xt =
0.7

1 + exp(−Xt−1)
+ {φ(Xt−1 + 1.2) + 1.5φ(Xt−1 − 1.2)} εt. (23)

The errorsεt are i.i.d. and normally distributed, with zero mean and unit variance.
It can be easily shown that both the models are geometricallyergodic and exponen-
tially β-mixing, since they satisfy the assumptions (A1)-(A5). Note that the first model
has only one point for which the first derivative does not exist, and this does not have
any effect on the estimation. Model (23) is similar to that considered in the paper of
Härdle and Tsybakov (1997).
We considered two different time series lengthsn = (500, 1000). For each model, we
generated 200 replications for a given time series length. We consider the problem of
the bandwidth selection in the local linear estimation of the volatility function by using
both the estimators described in section 2. Thus we have to estimate the five functionals
reported in (9), (10), (13) and (14). We use two plug-in methods: the neural network
plug-in approach described in section 4 and the traditionalplug-in approach, based on the
local polynomial estimation of the previous functionals. In all the simulations, we use the
Epanechnikov kernel, which is defined asK(u) = 0.75(1 − u2), for |u| ≤ 1.
As a first step, we simulated the true values of the unknown functionals which appear
in the asymptotical formulas of the bandwidths by Monte Carlosimulations, considering
5000 realizations of lenghtn = 1000 for each model. These values can be used to derive
the “true” optimal bandwidths. The results are reported in the table below
Figure 1 and 2 report the boxplots of the estimated functionals for models (22) and (23),
using the neural network and the local polynomial approaches. In particular, the last
procedure has been used with a pilot bandwidth near to the optimal value. The panel
on the left considers time series of lengthn = 500, while the other panel reports the
estimates forn = 1000. The first two boxplots of each panel refer to the estimates of
the functional in (10) obtained respectively by our procedure (.NN) and by the traditional
Local Polynomial estimator (.ker). The third and fourth boxplots concern the estimation
of the functional in (9), while the last two refer to the functionalRf (m

′′) in the (13). The



Table 1: The true values for the functionals (9), (10), (13) and (14),derived by
Monte Carlo simulations, for the two models (22) and (23).

R(s) R(v) Rf(v
′′) Rf(m

′′) Rf [v
′′ + 2(m′)2]

Model (22) 0.1064 0.0124 0.0231 0 0.0231
Model (23) 0.1617 0.0392 0.0839 0.0005 0.0646
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Figure 1: Boxplots of the estimated functionals for model (22). The panel on the
left considers time series of lengthn = 500, while the other panel reports the
estimates forn = 1000. The first two boxplots of each panel refer to the
estimates of the functional in the (10) obtained respectively by our procedure
(.NN) and by the traditional Local Polynomial estimator (.ker). The third and
fourth boxplots concern the estimation of the functional inthe (9), while the last
two refer to the functionalRf (m

′′) in the (13).

dashed line refers to the true value of the functionalRf (v
′′), while the dotted line refers

to the true value of the functionalRf (v
′′ + 2(m′)2) (note that for model (22) we have that

Rf (v
′′) = Rf (v

′′ + 2(m′)2)).
It is evident from the box-plots that both the procedures areconsistent, but the neural
networks seem to outperform the local polynomial estimators. For the sake of brevity, we
do not report the results relative to the other functionalsR(v) andR(s).
We should stress the fact that the implementation of our procedure is relatively simple,
because we do not have to guess any value for the tuning parameter d (number of nodes
of the hiden layer). We just used in our simulations a BIC selection algoritmh which
automatically selects the optimal value ofd.
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